463 research outputs found

    ‘It stays with you’: multiple evocative representations of dance and future possibilities for studies in sport and physical cultures

    Get PDF
    This article considers the integration of arts-based representations via poetic narratives together with artistic representation on dancing embodiment so as to continue an engagement with debates regarding multiple forms/representations. Like poetry, visual images are unique and can evoke particular kinds of emotional and visceral responses, meaning that alternative representational forms can resonate in different and powerful ways. In the article, we draw on grandparent-grandchild interactions, narrative poetry, and artistic representations of dance in order to illustrate how arts-based methods might synergise to offer new ways of ‘knowing’ and ‘seeing’. The expansion of the visual arts into interdisciplinary methodological innovations is a relatively new, and sometimes contentious approach, in studies of sport and exercise. We raise concerns regarding the future for more arts-based research in the light of an ever-changing landscape of a neoliberal university culture that demands high productivity in reductionist terms of what counts as ‘output’, often within very restricted time-frames. Heeding feminist calls for ‘slow academies’ that attempt to ‘change’ time collectively, and challenge the demands of a fast-paced audit culture, we consider why it is worth enabling creative and arts-based methods to continue to develop and flourish in studies of sport, exercise and health, despite the mounting pressures to ‘perform’

    Decoupling Inflation From the String Scale

    Full text link
    When Inflation is embedded in a fundamental theory, such as string theory, it typically begins when the Universe is already substantially larger than the fundamental scale [such as the one defined by the string length scale]. This is naturally explained by postulating a pre-inflationary era, during which the size of the Universe grew from the fundamental scale to the initial inflationary scale. The problem then arises of maintaining the [presumed] initial spatial homogeneity throughout this era, so that, when it terminates, Inflation is able to begin in its potential-dominated state. Linde has proposed that a spacetime with compact negatively curved spatial sections can achieve this, by means of chaotic mixing. Such a compactification will however lead to a Casimir energy, which can lead to effects that defeat the purpose unless the coupling to gravity is suppressed. We estimate the value of this coupling required by the proposal, and use it to show that the pre-inflationary spacetime is stable, despite the violation of the Null Energy Condition entailed by the Casimir energy.Comment: 24 pages, 5 eps figures, references added, stylistic changes, version to appear in Classical and Quantum Gravit

    Instanton Contribution to the Proton and Neutron Electric Form Factors

    Get PDF
    We study the instanton contribution to the proton and neutron electric form factors. Using the single instanton approximation, we perform the calculations in a mixed time-momentum representation in order to obtain the form factors directly in momentum space. We find good agreement with the experimentally measured electric form factor of the proton. For the neutron, our result falls short of the experimental data. We argue that this discrepancy is due to the fact that we neglect the contribution of the sea quarks. We compare to lattice calculations and a relativistic version of the quark-diquark model.Comment: 8 pages, 5 figures, updated references, to appear in Phys. Lett.

    Remarks on 2+1 Self-dual Chern-Simons Gravity

    Get PDF
    We study 2+1 Chern-Simons gravity at the classical action level. In particular we rederive the linear combinations of the ``standard'' and ``exotic'' Einstein actions, from the (anti) self-duality of the ``internal'' Lorentzian indices. The relation to a genuine four-dimensional (anti)self-dual topological theory greatly facilitates the analysis and its relation to hyperbolic three-dimensional geometry. Finally a non-abelian vector field ``dual'' action is also obtained.Comment: 16+1 pages, LaTeX file, no figures, clarifications and comments added, typos corrected and one reference adde

    Electromagnetic Form Factors of the SU(3) Octet Baryons in the semibosonized SU(3) Nambu-Jona-Lasinio Model

    Get PDF
    The electromagnetic form factors of the SU(3) octet baryons are investigated in the semibosonized SU(3) Nambu--Jona-Lasinio model (chiral quark-soliton model). The rotational 1/Nc1/N_c and strange quark mass corrections in linear order are taken into account. The electromagnetic charge radii of the nucleon and magnetic moments are also evaluated. It turns out that the model is in a remarkable good agreement with the experimental data.Comment: RevTex is used. 37 pages. The final version to appear in Phys. Rev. D. 13 figures are include

    Making Space for Failure in Geographic Research

    Get PDF
    The idea that field research is an inherently “messy” process has become widely accepted by geographers in recent years. There has thus far been little acknowledgment, however, of the role that failure plays in doing human geography. In this article we push back against this, arguing that failure should be recognized as a central component of what it means to do qualitative geographical field research. This article seeks to use failure proactively and provocatively as a powerful resource to improve research practice and outcomes, reconsidering and giving voice to it as everyday, productive, and necessary to our continual development as researchers and academics. This article argues that there is much value to be found in failure if it is critically examined and shared, and—crucially—if there is a supportive space in which to exchange our experiences of failing in the field

    Electromagnetic Form Factors of the Nucleon in an Improved Quark Model

    Get PDF
    Nucleon electromagnetic form factors are studied in the cloudy bag model (CBM) with center-of-mass and recoil corrections. This is the first presentation of a full set of nucleon form factors using the CBM. The center of mass motion is eliminated via several different momentum projection techniques and the results are compared. It is found that the shapes of these form factors are significantly improved with respect to the experimental data if the Lorentz contraction of the internal structure of the baryon is also appropriately taken into account.Comment: revtex, 28 pages, 8 ps figs include

    Extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors

    Get PDF
    Nucleon electromagnetic form factor data (including recent data) is fitted with models that respect the confinement and asymptotic freedom properties of QCD. Gari-Krumpelmann (GK) type models, which include the major vector meson pole contributions and at high momentum transfer conform to the predictions of perturbative QCD, are combined with Hohler-Pietarinen (HP) models, which also include the width of the rho meson and the addition of higher mass vector meson exchanges, but do not evolve into the explicit form of PQCD at high momentum transfer. Different parameterizations of the GK model's hadronic form factors, the effect of including the width of the rho meson and the addition of the next (in mass) isospin 1 vector meson are considered. The quality of fit and the consistency of the parameters select three of the combined HP/GK type models. Projections are made to the higher momentum transfers which are relevant to electron-deuteron experiments. The projections vary little for the preferred models, removing much of the ambiguity in electron-nucleus scattering predictions.Comment: 18pp, 7 figures, using RevTeX with BoxedEPS macros; 1 new figure, minor textual changes; email correspondence to [email protected]
    corecore