3,134 research outputs found

    A Planetary Companion to gamma Cephei A

    Full text link
    We report on the detection of a planetary companion in orbit around the primary star of the binary system γ\gamma Cephei. High precision radial velocity measurements using 4 independent data sets spanning the time interval 1981--2002 reveal long-lived residual radial velocity variations superimposed on the binary orbit that are coherent in phase and amplitude with a period or 2.48 years (906 days) and a semi-amplitude of 27.5 m s1^{-1}. We performed a careful analysis of our Ca II H & K S-index measurements, spectral line bisectors, and {\it Hipparcos} photometry. We found no significant variations in these quantities with the 906-d period. We also re-analyzed the Ca II λ\lambda8662 {\AA} measurements of Walker et al. (1992) which showed possible periodic variations with the ``planet'' period when first published. This analysis shows that periodic Ca II equivalent width variations were only present during 1986.5 -- 1992 and absent during 1981--1986.5. Furthermore, a refined period for the Ca II λ\lambda8662 {\AA} variations is 2.14 yrs, significantly less than residual radial velocity period. The most likely explanation of the residual radial velocity variations is a planetary mass companion with MM sin ii = 1.7 MJupiterM_{Jupiter} and an orbital semi-major axis of a2a_2 == 2.13 AU. This supports the planet hypothesis for the residual radial velocity variations for γ\gamma Cep first suggested by Walker et al. (1992). With an estimated binary orbital period of 57 years γ\gamma Cep is the shortest period binary system in which an extrasolar planet has been found. This system may provide insights into the relationship between planetary and binary star formation.Comment: 19 pages, 15 figures, accepted in Ap. J. Includes additional data and improved orbital solutio

    Geochemical constraints on the origin of enigmatic cemented chalks, Norfolk, UK

    Get PDF
    Very hard cemented chalk stacks and crusts found locally in the upper part of the Cretaceous Chalk of north Norfolk, UK, are related to solution features. The solution features, mainly pipes and caves, formed after deposition of the overlying Middle Pleistocene Wroxham Crag, probably by routing of sub-glacial, or glacial, melt-waters derived from late Pleistocene glaciers. New geochemical (particularly stable isotope) data shows that cementation of the chalks, although related spatially to the solution features, was not caused by glacier-derived waters. The carbon isotope composition of the chalk cements is typically around -9.5‰, indicative of biologically active soils. Moreover, the oxygen isotope compositions of the cements, around -5‰, are incompatible with water d18O values much below -9 to -10‰ (which probably precludes isotopically negative glacier-derived water), as resulting palaeo-temperatures are below zero. Taken together, the isotope data suggest chalk cementation occurred under interglacial conditions similar to the present. Dissolved calcium carbonate for cementation came from dissolution of reworked chalk in overlying MIS 12 glacial tills

    Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications

    Get PDF
    In order to investigate the mechanism of As release to anoxic ground water in alluvial aquifers, the authors sampled ground waters from 3 piezometer nests, 79 shallow (80 m) wells, in an area 750 m by 450 m, just north of Barasat, near Kolkata (Calcutta), in southern West Bengal. High concentrations of As (200-1180 mug L-1) are accompanied by high concentrations of Fe (3-13.7 mgL(-1)) and PO4 (1-6.5 mg L-1). Ground water that is rich in Mn (1-5.3 mg L-1) contains <50 mug L-1 of As. The composition of shallow ground water varies at the 100-m scale laterally and the metre-scale vertically, with vertical gradients in As concentration reaching 200 mug L-1 m(-1). The As is supplied by reductive dissolution of FeOOH and release of the sorbed As to solution. The process is driven by natural organic matter in peaty strata both within the aquifer sands and in the overlying confining unit. In well waters, thermotolerant coliforms, a proxy for faecal contamination, are not present in high numbers (<10 cfu/100 ml in 85% of wells) showing that faecally-derived organic matter does not enter the aquifer, does not drive reduction of FeOOH, and so does not release As to ground water.Arsenic concentrations are high (much greater than50 mug L-1) where reduction of FeOOH is complete and its entire load of sorbed As is released to solution, at which point the aquifer sediments become grey in colour as FeOOH vanishes. Where reduction is incomplete, the sediments are brown in colour and resorption of As to residual FeOOH keeps As concentrations below 10 mug L-1 in the presence of dissolved Fe. Sorbed As released by reduction of Mn oxides does not increase As in ground water because the As resorbs to FeOOH. High concentrations of As are common in alluvial aquifers of the Bengal Basin arise because Himalayan erosion supplies immature sediments, with low surface-loadings of FeOOH on mineral grains, to a depositional environment that is rich in organic mater so that complete reduction of FeOOH is common. (C) 2004 Published by Elsevier Ltd

    Palynofacies classification of the depositional elements of confined turbidite systems : Examples from the Gres d'Annot, SE France

    Get PDF
    Acknowledgements We thank BG Brasil for financial support for this project and permission to publish. BG Group is a wholly owned subsidiary of Royal Dutch Shell. McArthur is grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship 049/2012. The Agência Nacional do Petróleo (ANP) are thanked for supporting this project. Massimo Zecchin is thanked for handling this paper and Roberto Tinterri is thanked for his constructive review, in addition to an anonymous reviewer.Peer reviewedPostprin

    Ectoplasm & Superspace Integration Measure for 2D Supergravity with Four Spinorial Supercurrents

    Full text link
    Building on a previous derivation of the local chiral projector for a two dimensional superspace with eight real supercharges, we provide the complete density projection formula required for locally supersymmetrical theories in this context. The derivation of this result is shown to be very efficient using techniques based on the Ectoplasmic construction of local measures in superspace.Comment: 18 pages, LaTeX; V2: minor changes, typos corrected, references added; V3: version to appear in J. Phys. A: Math. Theor., some comments and references added to address a referee reques

    Photometry of Proxima Centauri and Barnard's Star Using HST Fine Guidance Sensor 3: A Search for Periodic Variations

    Get PDF
    We have observed Proxima Centauri and Barnard's Star with Hubble Space Telescope Fine Guidance Sensor 3. Proxima Centauri exhibits small-amplitude, periodic photometric variations. Once several sources of systematic photometric error are corrected, we obtain 2 milli-magnitude internal photometric precision. We identify two distinct behavior modes over the past four years: higher amplitude, longer period; smaller amplitude, shorter period. Within the errors one period (P ~ 83d) is twice the other. Barnard's Star shows very weak evidence for periodicity on a timescale of approximately 130 days. If we interpret these periodic phenomena as rotational modulation of star spots, we identify three discrete spots on Proxima Cen and possibly one spot on Barnard's Star. We find that the disturbances change significantly on time scales as short as one rotation period.Comment: 39 pages, 17 figure

    Evidence for a Long-period Planet Orbiting Epsilon Eridani

    Full text link
    High precision radial velocity (RV) measurements spanning the years 1980.8--2000.0 are presented for the nearby (3.22 pc) K2 V star ϵ\epsilon Eri. These data, which represent a combination of six independent data sets taken with four different telescopes, show convincing variations with a period of \approx 7 yrs. A least squares orbital solution using robust estimation yields orbital parameters of period, PP = 6.9 yrs, velocity KK-amplitude == 19 {\ms}, eccentricity ee == 0.6, projected companion mass MM sin ii = 0.86 MJupiterM_{Jupiter}, and semi-major axis a2a_2 == 3.3 AU. Ca II H&K S-index measurements spanning the same time interval show significant variations with periods of 3 and 20 yrs, yet none at the RV period. If magnetic activity were responsible for the RV variations then it produces a significantly different period than is seen in the Ca II data. Given the lack of Ca II variation with the same period as that found in the RV measurements, the long-lived and coherent nature of these variations, and the high eccentricity of the implied orbit, Keplerian motion due to a planetary companion seems to be the most likely explanation for the observed RV variations. The wide angular separation of the planet from the star (approximately 1 arc-second) and the long orbital period make this planet a prime candidate for both direct imaging and space-based astrometric measurements.Comment: To appear in Astrophysical Journal Letters. 9 pages, 2 figure
    corecore