404 research outputs found
Collision of millimetre droplets induces DNA and protein transfection into cells
Nonperturbing and simple transfection methods are important for modern techniques used in biotechnology. Recently, we reported that electrospraying can be applied to DNA transfection in cell lines, bacteria, and chicken embryos. However, the transfection efficiency was only about 2%. To improve the transfection rate, physical properties of the sprayed droplets were studied in different variations of the method. We describe a highly efficient technique (30–93%) for introduction of materials such as DNA and protein into living cells by electrospraying droplets of a high conductivity liquid onto cells incubated with the material for transfection. Electric conductivity has a sizable influence on the success of transfection. In contrast, molecular weight of the transfected material, types of ions in the electrospray solution, and the osmotic pressure do not influence transfection efficiency. The physical analysis revealed that collision of cells with millimetre-sized droplets activates intracellular uptake
Analysis of large oxygenated and nitrated polycyclic aromatic hydrocarbons formed under simulated diesel engine exhaust conditions (by compound fingerprints with SPE/LC-API-MS)
The analysis of organic compounds in combustion exhaust particles and the chemical transformation of soot by nitrogen oxides are key aspects of assessment and mitigation of the climate and health effects of aerosol emissions from fossil fuel combustion and biomass burning. In this study we present experimental and analytical techniques for efficient investigation of oxygenated and nitrated derivatives of large polycyclic aromatic hydrocarbons (PAHs), which can be regarded as well-defined soot model substances. For coronene and hexabenzocoronene exposed to nitrogen dioxide under simulated diesel exhaust conditions, several reaction products with high molecular mass could be characterized by liquid chromatography-atmospheric pressure chemical (and photo) ionization-mass spectrometry (LC-APCI-MS and LC-APPI-MS). The main products of coronene contained odd numbers of nitrogen atoms (m/z 282, 256, 338), whereas one of the main products of hexabenzocoronene exhibited an even number of nitrogen atoms (m/z 391). Various reaction products containing carbonyl and nitro groups could be tentatively identified by combining chromatographic and mass spectrometric information, and changes of their relative abundance were observed to depend on the reaction conditions. This analytical strategy should highlight a relatively young technique for the characterization of various soot-contained, semi-volatile, and semi-polar reaction products of large PAHs
- …