96,599 research outputs found

    Dynamics of vortex glass phase in strongly type II superconductors

    Full text link
    Dynamics of vortices in strongly type-II superconductors with strong disorder is investigated within the frustrated three-dimensional XY model. For two typical models in [Phys. Rev. Lett. {\bf 91}, 077002 (2003)] and [Phys. Rev. B {\bf 68}, 220502(R) (2003)], a strong evidence for the finite temperature vortex glass transition in the unscreened limit is provided by performing large-scale dynamical simulations. The obtained correlation length exponents and the dynamic exponents in both models are different from each other and from those in the three-dimensional gauge glass model. In addition, a genuine continuous depinning transition is observed at zero temperature for both models. A scaling analysis for the thermal rounding of the depinning transition shows a non-Arrhenius type creep motion in the vortex glass phase, contrarily to the recent studies..Comment: 6 pages, 5 figure

    A Model for Structure Formation Seeded by Gravitationally Produced Matter

    Get PDF
    This model assumes the baryons, radiation, three families of massless neutrinos, and cold dark matter were mutually thermalized before the baryon number was fixed, primeval curvature fluctuations were subdominant, and homogeneity was broken by scale-invariant fluctuations in a new dark matter component that behaves like a relativistic ideal fluid. The fluid behavior could follow if this new component were a single scalar field that interacts only with gravity and with itself by a pure quartic potential. The initial energy distribution could follow if this component were gravitationally produced by inflation. The power spectra of the present distributions of mass and radiation in this model are not inconsistent with the measurements but are sufficiently different from the adiabatic cold dark matter model to allow a sharp test in the near future.Comment: 4 pages, 2 figures submitted to ApJ Letter

    Collective modes and ballistic expansion of a Fermi gas in the BCS-BEC crossover

    Full text link
    We evaluate the frequencies of collective modes and the anisotropic expansion rate of a harmonically trapped Fermi superfluid at varying coupling strengths across a Feshbach resonance driving a BCS-BEC crossover. The equations of motion for the superfluid are obtained from a microscopic mean-field expression for the compressibility and are solved within a scaling ansatz. Our results confirm non-monotonic behavior in the crossover region and are in quantitative agreement with current measurements of the transverse breathing mode by Kinast {\it et al.} [Phys. Rev. Lett. {\bf 92}, 150402 (2004)] and of the axial breathing mode by Bartenstein {\it et al.} [Phys. Rev. Lett. {\bf 92}, 203201 (2004)].Comment: 4 pages and 4 figures; proof version with more extensive discussions on the comparison between theoretical results and experimental findings; to appear in Phys. Rev. Lett. (Nov. 2004

    The maximum of the local time of a diffusion process in a drifted Brownian potential

    Full text link
    We consider a one-dimensional diffusion process XX in a (−κ/2)(-\kappa/2)-drifted Brownian potential for κ≠0\kappa\neq 0. We are interested in the maximum of its local time, and study its almost sure asymptotic behaviour, which is proved to be different from the behaviour of the maximum local time of the transient random walk in random environment. We also obtain the convergence in law of the maximum local time of XX under the annealed law after suitable renormalization when κ≥1\kappa \geq 1. Moreover, we characterize all the upper and lower classes for the hitting times of XX, in the sense of Paul L\'evy, and provide laws of the iterated logarithm for the diffusion XX itself. To this aim, we use annealed technics.Comment: 38 pages, new version, merged with hal-00013040 (arXiv:math/0511053), with some additional result

    Exact Ampitude Ratio and Finite-Size Corrections for the M x N Square Lattice Ising Model The :

    Full text link
    Let f, U and C represent, respectively, the free energy, the internal energy and the specific heat of the critical Ising model on the square M x N lattice with periodic boundary conditions. We find that N f and U are well-defined odd function of 1/N. We also find that ratios of subdominant (N^(-2 i - 1)) finite-size corrections amplitudes for the internal energy and the specific heat are constant. The free energy and the internal energy at the critical point are calculated asymtotically up to N^(-5) order, and the specific heat up to N^(-3) order.Comment: 18 pages, 4 figures, to be published in Phys. Rev. E 65, 1 February 200

    Group-level Emotion Recognition using Transfer Learning from Face Identification

    Full text link
    In this paper, we describe our algorithmic approach, which was used for submissions in the fifth Emotion Recognition in the Wild (EmotiW 2017) group-level emotion recognition sub-challenge. We extracted feature vectors of detected faces using the Convolutional Neural Network trained for face identification task, rather than traditional pre-training on emotion recognition problems. In the final pipeline an ensemble of Random Forest classifiers was learned to predict emotion score using available training set. In case when the faces have not been detected, one member of our ensemble extracts features from the whole image. During our experimental study, the proposed approach showed the lowest error rate when compared to other explored techniques. In particular, we achieved 75.4% accuracy on the validation data, which is 20% higher than the handcrafted feature-based baseline. The source code using Keras framework is publicly available.Comment: 5 pages, 3 figures, accepted for publication at ICMI17 (EmotiW Grand Challenge

    Models of f(R) Cosmic Acceleration that Evade Solar-System Tests

    Full text link
    We study a class of metric-variation f(R) models that accelerates the expansion without a cosmological constant and satisfies both cosmological and solar-system tests in the small-field limit of the parameter space. Solar-system tests alone place only weak bounds on these models, since the additional scalar degree of freedom is locked to the high-curvature general-relativistic prediction across more than 25 orders of magnitude in density, out through the solar corona. This agreement requires that the galactic halo be of sufficient extent to maintain the galaxy at high curvature in the presence of the low-curvature cosmological background. If the galactic halo and local environment in f(R) models do not have substantially deeper potentials than expected in LCDM, then cosmological field amplitudes |f_R| > 10^{-6} will cause the galactic interior to evolve to low curvature during the acceleration epoch. Viability of large-deviation models therefore rests on the structure and evolution of the galactic halo, requiring cosmological simulations of f(R) models, and not directly on solar-system tests. Even small deviations that conservatively satisfy both galactic and solar-system constraints can still be tested by future, percent-level measurements of the linear power spectrum, while they remain undetectable to cosmological-distance measures. Although we illustrate these effects in a specific class of models, the requirements on f(R) are phrased in a nearly model-independent manner.Comment: 13 pages, 10 figures. Submitted to Phys. Rev.
    • …
    corecore