1,075 research outputs found

    Centre-specific bacterial pathogen typing affects infection-control decision making

    Get PDF
    Whole-genome sequencing is becoming the de facto standard for bacterial outbreak surveillance and infection prevention. This is accompanied by a variety of bioinformatic tools and needs bioinformatics expertise for implementation. However, little is known about the concordance of reported outbreaks when using different bioinformatic workflows. In this multi-centre proficiency testing among 13 major Dutch healthcare-affiliated centres, bacterial whole-genome outbreak analysis was assessed. Centres who participated obtained two randomized bacterial datasets of Illumina sequences, a Klebsiella pneumoniae and a Vancomycin-resistant Enterococcus faecium, and were asked to apply their bioinformatic workflows. Centres reported back on antimicrobial resistance, multi-locus sequence typing (MLST), and outbreak clusters. The reported clusters were analysed using a method to compare landscapes of phylogenetic trees and calculating Kendall–Colijn distances. Furthermore, fasta files were analysed by state-of-the-art single nucleotide polymorphism (SNP) analysis to mitigate the differences introduced by each centre and determine standardized SNP cut-offs. Thirteen centres participated in this study. The reported outbreak clusters revealed discrepancies between centres, even when almost identical bioinformatic workflows were used. Due to stringent filtering, some centres failed to detect extended-spectrum beta-lactamase genes and MLST loci. Applying a standardized method to determine outbreak clusters on the reported de novo assemblies, did not result in uniformity of outbreak-cluster composition among centres

    Determining Magnetic Nanoparticle Size Distributions from Thermomagnetic Measurements

    Full text link
    Thermomagnetic measurements are used to obtain the size distribution and anisotropy of magnetic nanoparticles. An analytical transformation method is described which utilizes temperature-dependent zero-field cooling (ZFC) magnetization data to provide a quantitative measurement of the average diameter and relative abundance of superparamagnetic nanoparticles. Applying this method to self-assembled MnAs nanoparticles in MnAs-GaAs composite films reveals a log-normal size distribution and reduced anisotropy for nanoparticles compared to bulk materials. This analytical technique holds promise for rapid assessment of the size distribution of an ensemble of superparamagnetic nanoparticles.Comment: Correction Appl. Phys. Lett. 98, 216103 (2011

    Evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in Eu1x_{1-x}Gdx_{x}O

    Full text link
    Raman scattering studies as functions of temperature, magnetic field, and Gd-substitution are used to investigate the evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in Eu1x_{1-x}Gdx_{x}O. These studies reveal a greater richness of phase behavior than have been previously observed using transport measurements: a spin-fluctuation-dominated paramagnetic (PM) phase regime for T >> T^{*} >> TC_{C}, a two-phase regime for T << T^{*} in which magnetic polarons develop and coexist with a remnant of the PM phase, and an inhomogeneous ferromagnetic phase regime for T << TC_{C}

    Hard Instances of the Constrained Discrete Logarithm Problem

    Full text link
    The discrete logarithm problem (DLP) generalizes to the constrained DLP, where the secret exponent xx belongs to a set known to the attacker. The complexity of generic algorithms for solving the constrained DLP depends on the choice of the set. Motivated by cryptographic applications, we study sets with succinct representation for which the constrained DLP is hard. We draw on earlier results due to Erd\"os et al. and Schnorr, develop geometric tools such as generalized Menelaus' theorem for proving lower bounds on the complexity of the constrained DLP, and construct sets with succinct representation with provable non-trivial lower bounds

    Anorgasmia in women

    Full text link
    This article reports on the etiology and treatment of anorgasmia. Etiological factors include childhood and adolescent experiences, current individual attitudes, and lifestyle factors, as well as the quality and dynamics of past and present committed relationships. It is important to assess the nature of each of the previously mentioned factors in determining the nature of the orgasmic dysfunction as well as assisting in the development of a treatment plan. Treatment approaches for anorgasmia need to address individual factors (e.g., performance anxiety, poor body image) as well as interpersonal problems. A systemic treatment framework would appear to be the most useful approach to treat this sexual dysfunction, as this type of strategy identifies and treats the difficulties experienced by the anorgasmic woman within the total context of her life. Of course, this approach necessitates the involvement of the partner in therapy, and treatment is unlikely to be effective unless the problems experienced by both the woman and her partner are addressed. Limitations of past research in terms of inadequate evaluation of treatment, low sample sizes, and poorly defined interventions are discussed. Finally, directions for future research to advance our understanding of the most effective treatments for anorgasmia are considered. <br /

    Magnetic Interactions and Transport in (Ga,Cr)As

    Full text link
    The magnetic, transport, and structural properties of (Ga,Cr)As are reported. Zincblende Ga1x_{1-x}Crx_{x}As was grown by low-temperature molecular beam epitaxy (MBE). At low concentrations, x\sim0.1, the materials exhibit unusual magnetic properties associated with the random magnetism of the alloy. At low temperatures the magnetization M(B) increases rapidly with increasing field due to the alignment of ferromagnetic units (polarons or clusters) having large dipole moments of order 10-102^2μB\mu_B. A standard model of superparamagnetism is inadequate for describing both the field and temperature dependence of the magnetization M(B,T). In order to explain M(B) at low temperatures we employ a distributed magnetic moment (DMM) model in which polarons or clusters of ions have a distribution of moments. It is also found that the magnetic susceptibility increases for decreasing temperature but saturates below T=4 K. The inverse susceptibility follows a linear-T Curie-Weiss law and extrapolates to a magnetic transition temperature θ\theta=10 K. In magnetotransport measurements, a room temperature resistivity of ρ\rho=0.1 Ω\Omegacm and a hole concentration of 1020\sim10^{20} cm3^{-3} are found, indicating that Cr can also act as a acceptor similar to Mn. The resistivity increases rapidly for decreasing temperature below room temperature, and becomes strongly insulating at low temperatures. The conductivity follows exp[-(T1_1/T)1/2^{1/2}] over a large range of conductivity, possible evidence of tunneling between polarons or clusters.Comment: To appear in PRB 15 Mar 200
    corecore