1,099 research outputs found

    On the "spin-freezing" mechanism in underdoped superconducting cuprates

    Full text link
    The letter deals with the spin-freezing process observed by means of NMR-NQR relaxation or by muon spin rotation in underdoped cuprate superconductors. This phenomenon, sometimes referred as coexistence of antiferromagnetic and superconducting order parameters, is generally thought to result from randomly distributed magnetic moments related to charge inhomogeneities (possibly stripes) which exhibit slowing down of their fluctuations on cooling below Tc_c . Instead, we describe the experimental findings as due to fluctuating, vortex-antivortex, orbital currents state coexisting with d-wave superconducting state. A direct explanation of the experimental results, in underdoped Y1−x_{1-x}Cax_xBa2_2Cu3_3O6.1_{6.1} and La2−x_{2-x}Sr%_xCuO4_4, is thus given in terms of freezing of orbital current fluctuations

    Quasiparticle interference from different impurities on the surface of pyrochlore iridates: signatures of the Weyl phase

    Full text link
    Weyl semimetals are gapless three-dimensional topological materials where two bands touch at an even number of points in the bulk Brillouin zone. These semimetals exhibit topologically protected surface Fermi arcs, which pairwise connect the projected bulk band touchings in the surface Brillouin zone. Here, we analyze the quasiparticle interference patterns of the Weyl phase when time-reversal symmetry is explicitly broken. We use a multi-band dd-electron Hubbard Hamiltonian on a pyrochlore lattice, relevant for the pyrochlore iridate R2_2Ir2_2O7_7 (where R is a rare earth). Using exact diagonalization, we compute the surface spectrum and quasiparticle interference (QPI) patterns for various surface terminations and impurities. We show that the spin and orbital texture of the surface states can be inferred from the absence of certain backscattering processes and from the symmetries of the QPI features for non-magnetic and magnetic impurities. Furthermore, we show that the QPI patterns of the Weyl phase in pyrochlore iridates may exhibit additional interesting features that go beyond those found previously in TaAs.Comment: 15 pages, 16 figure

    Superconducting phase diagram of itinerant antiferromagnets

    Full text link
    We study the phase diagram of the Hubbard model in the weak-coupling limit for coexisting spin-density-wave order and spin-fluctuation-mediated superconductivity. Both longitudinal and transverse spin fluctuations contribute significantly to the effective interaction potential, which creates Cooper pairs of the quasi-particles of the antiferromagnetic metallic state. We find a dominant dx2−y2d_{x^2-y^2}-wave solution in both electron- and hole-doped cases. In the quasi-spin triplet channel, the longitudinal fluctuations give rise to an effective attraction supporting a pp-wave gap, but are overcome by repulsive contributions from the transverse fluctuations which disfavor pp-wave pairing compared to dx2−y2d_{x^2-y^2}. The sub-leading pair instability is found to be in the gg-wave channel, but complex admixtures of dd and gg are not energetically favored since their nodal structures coincide. Inclusion of interband pairing, in which each fermion in the Cooper pair belongs to a different spin-density-wave band, is considered for a range of electron dopings in the regime of well-developed magnetic order. We demonstrate that these interband pairing gaps, which are non-zero in the magnetic state, must have the same parity under inversion as the normal intraband gaps. The self-consistent solution to the full system of five coupled gap equations give intraband and interband pairing gaps of dx2−y2d_{x^2-y^2} structure and similar gap magnitude. In conclusion, the dx2−y2d_{x^2-y^2} gap dominates for both hole and electron doping inside the spin-density-wave phase.Comment: 14 pages, 9 figure

    Interplay of magnetic and structural transitions in Fe-based pnictide superconductors

    Full text link
    The interplay between the structural and magnetic phase transitions occurring in the Fe-based pnictide superconductors is studied within a Ginzburg-Landau approach. We show that the magnetoelastic coupling between the corresponding order parameters is behind the salient features observed in the phase diagram of these systems. This naturally explains the coincidence of transition temperatures observed in some cases as well as the character (first or second-order) of the transitions. We also show that magnetoelastic coupling is the key ingredient determining the collinearity of the magnetic ordering, and we propose an experimental criterion to distinguish between a pure elastic from a spin-nematic-driven structural transition.Comment: 5 pages, 3 figures. v2: Fig. 1 improved, references added

    Polaron Effects on Superexchange Interaction: Isotope Shifts of TNT_N, TCT_C, and T∗T^* in Layered Copper Oxides

    Full text link
    A compact expression has been obtained for the superexchange coupling of magnetic ions via intermediate anions with regard to polaron effects at both magnetic ions and intermediate anions. This expression is used to analyze the main features of the behavior of isotope shifts for temperatures of three types in layered cuprates: the Neel temperatures (TNT_N), critical temperatures of transitions to a superconducting state (TCT_C), and characteristic temperatures of the pseudogap in the normal state (T∗T^*).Comment: 4 pages, 1 figur

    Pairing symmetry of the one-band Hubbard model in the paramagnetic weak-coupling limit: a numerical RPA study

    Full text link
    We study the spin-fluctuation-mediated superconducting pairing gap in a weak-coupling approach to the Hubbard model for a two dimensional square lattice in the paramagnetic state. Performing a comprehensive theoretical study of the phase diagram as a function of filling, we find that the superconducting gap exhibits transitions from p-wave at very low electron fillings to d_{x^2-y^2}-wave symmetry close to half filling in agreement with previous reports. At intermediate filling levels, different gap symmetries appear as a consequence of the changes in the Fermi surface topology and the associated structure of the spin susceptibility. In particular, the vicinity of a van Hove singularity in the electronic structure close to the Fermi level has important consequences for the gap structure in favoring the otherwise sub-dominant triplet solution over the singlet d-wave solution. By solving the full gap equation, we find that the energetically favorable triplet solutions are chiral and break time reversal symmetry. Finally, we also calculate the detailed angular gap structure of the quasi-particle spectrum, and show how spin-fluctuation-mediated pairing leads to significant deviations from the first harmonics both in the singlet d_{x^2-y^2} gap as well as the chiral triplet gap solution.Comment: 11 pages 11 figure

    Knight Shift and Leading Superconducting Instability From Spin Fluctuations in Sr2RuO4

    Full text link
    Recent nuclear magnetic resonance studies [A. Pustogow {\it et al.}, arXiv:1904.00047] have challenged the prevalent chiral triplet pairing scenario proposed for Sr2_2RuO4_4. To provide guidance from microscopic theory as to which other pair states might be compatible with the new data, we perform a detailed theoretical study of spin-fluctuation mediated pairing for this compound. We map out the phase diagram as a function of spin-orbit coupling, interaction parameters, and band-structure properties over physically reasonable ranges, comparing when possible with photoemission and inelastic neutron scattering data information. We find that even-parity pseudospin singlet solutions dominate large regions of the phase diagram, but in certain regimes spin-orbit coupling favors a near-nodal odd-parity triplet superconducting state, which is either helical or chiral depending on the proximity of the γ\gamma band to the van Hove points. A surprising near-degeneracy of the nodal s′s^\prime- and dx2−y2d_{x^2-y^2}-wave solutions leads to the possibility of a near-nodal time-reversal symmetry broken s′+idx2−y2s^\prime+id_{x^2-y^2} pair state. Predictions for the temperature dependence of the Knight shift for fields in and out of plane are presented for all states.Comment: 5 pages (3 figures) + supplementary informatio

    Electronic theory for superconductivity in Sr2_2RuO4_4: triplet pairing due to spin-fluctuation exchange

    Full text link
    Using a two-dimensional Hubbard Hamiltonian for the three electronic bands crossing the Fermi level in Sr2_2RuO4_4 we calculate the band structure and spin susceptibility χ(q,ω)\chi({\bf q}, \omega) in quantitative agreement with nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) experiments. The susceptibility has two peaks at {\bf Q}i=(2π/3,2π/3)_i = (2\pi/3, 2\pi/3) due to the nesting Fermi surface properties and at {\bf q}i=(0.6π,0)_i = (0.6\pi, 0) due to the tendency towards ferromagnetism. Applying spin-fluctuation exchange theory as in layered cuprates we determine from χ(q,ω)\chi({\bf q}, \omega), electronic dispersions, and Fermi surface topology that superconductivity in Sr2_2RuO4_4 consists of triplet pairing. Combining the Fermi surface topology and the results for χ(q,ω)\chi({\bf q}, \omega) we can exclude s−s- and d−d-wave symmetry for the superconducting order parameter. Furthermore, within our analysis and approximations we find that ff-wave symmetry is slightly favored over p-wave symmetry due to the nesting properties of the Fermi surface.Comment: 5 pages, 5 figures, misprints correcte
    • …
    corecore