144 research outputs found

    Nonlocality and entanglement in a strange system

    Get PDF
    We show that the relation between nonlocality and entanglement is subtler than one naively expects. In order to do this we consider the neutral kaon system--which is oscillating in time (particle--antiparticle mixing) and decaying--and describe it as an open quantum system. We consider a Bell--CHSH inequality and show a novel violation for non--maximally entangled states. Considering the change of purity and entanglement in time we find that, despite the fact that only two degrees of freedom at a certain time can be measured, the neutral kaon system does not behave like a bipartite qubit system.Comment: 7 pages, 2 figures, extended versio

    An open--quantum--system formulation of particle decay

    Full text link
    We consider an open quantum system which contains unstable states. The time evolution of the system can be described by an effective non-hermitian Hamiltonian H_{eff}, in accord with the Wigner--Weisskopf approximation, and an additional term of the Lindblad form, the socalled dissipator. We show that, after enlarging the original Hilbert space by states which represent the decay products of the unstable states, the non-hermitian part of H_{eff} --the ``particle decay''-- can be incorporated into the dissipator of the enlarged space via a specific Lindblad operator. Thus the new formulation of the time evolution on the enlarged space has a hermitian Hamiltonian and is probability conserving. The equivalence of the new formulation with the original one demonstrates that the time evolution which is governed by a non-hermitian Hamiltonian and a dissipator of the Lindblad form is nevertheless completely positive, just as systems with hermitian Hamiltonians.Comment: 8 page

    Decoherence of entangled kaons and its connection to entanglement measures

    Get PDF
    We study the time evolution of the entangled kaon system by considering the Liouville - von Neumann equation with an additional term which allows for decoherence. We choose as generators of decoherence the projectors to the 2-particle eigenstates of the Hamiltonian. Then we compare this model with the data of the CPLEAR experiment and find in this way an upper bound on the strength λ\lambda of the decoherence. We also relate λ\lambda to an effective decoherence parameter ζ\zeta considered previously in literature. Finally we discuss our model in the light of different measures of entanglement, i.e. the von Neumann entropy SS, the entanglement of formation EE and the concurrence CC, and we relate the decoherence parameter ζ\zeta to the loss of entanglement: 1−E1 - E.Comment: comments and references added, 18 pages, 1 figur

    Decoherence modes of entangled qubits within neutron interferometry

    Full text link
    We study two different decoherence modes for entangled qubits by considering a Liouville - von Neumann master equation. Mode A is determined by projection operators onto the eigenstates of the Hamiltonian and mode B by projectors onto rotated states. We present solutions for general and for Bell diagonal states and calculate for the later the mixedness and the amount of entanglement given by the concurrence. We propose a realization of the decoherence modes within neutron interferometry by applying fluctuating magnetic fields. An experimental test of the Kraus operator decomposition describing the evolution of the system for each mode is presented.Comment: 15 pages, 5 figure

    Modified Partition Functions, Consistent Anomalies and Consistent Schwinger Terms

    Full text link
    A gauge invariant partition function is defined for gauge theories which leads to the standard quantization. It is shown that the descent equations and consequently the consistent anomalies and Schwinger terms can be extracted from this modified partition function naturally.Comment: 25 page

    Chiral Anomalies via Classical and Quantum Functional Methods

    Full text link
    In the quantum path integral formulation of a field theory model an anomaly arises when the functional measure is not invariant under a symmetry transformation of the Lagrangian. In this paper, generalizing previous work done on the point particle, we show that even at the classical level we can give a path integral formulation for any field theory model. Since classical mechanics cannot be affected by anomalies, the measure of the classical path integral of a field theory must be invariant under the symmetry. The classical path integral measure contains the fields of the quantum one plus some extra auxiliary ones. So, at the classical level, there must be a sort of "cancellation" of the quantum anomaly between the original fields and the auxiliary ones. In this paper we prove in detail how this occurs for the chiral anomaly.Comment: 26 pages, Latex, misprint fixed, a dedication include

    Heisenberg's Uncertainty Relation and Bell Inequalities in High Energy Physics

    Full text link
    An effective formalism is developed to handle decaying two-state systems. Herewith, observables of such systems can be described by a single operator in the Heisenberg picture. This allows for using the usual framework in quantum information theory and, hence, to enlighten the quantum feature of such systems compared to non-decaying systems. We apply it to systems in high energy physics, i.e. to oscillating meson-antimeson systems. In particular, we discuss the entropic Heisenberg uncertainty relation for observables measured at different times at accelerator facilities including the effect of CP violation, i.e. the imbalance of matter and antimatter. An operator-form of Bell inequalities for systems in high energy physics is presented, i.e. a Bell-witness operator, which allows for simple analysis of unstable systems.Comment: 17 page

    Entanglement, Bell Inequalities and Decoherence in Particle Physics

    Full text link
    We demonstrate the relevance of entanglement, Bell inequalities and decoherence in particle physics. In particular, we study in detail the features of the ``strange'' K0Kˉ0K^0 \bar K^0 system as an example of entangled meson--antimeson systems. The analogies and differences to entangled spin--1/2 or photon systems are worked, the effects of a unitary time evolution of the meson system is demonstrated explicitly. After an introduction we present several types of Bell inequalities and show a remarkable connection to CP violation. We investigate the stability of entangled quantum systems pursuing the question how possible decoherence might arise due to the interaction of the system with its ``environment''. The decoherence is strikingly connected to the entanglement loss of common entanglement measures. Finally, some outlook of the field is presented.Comment: Lectures given at Quantum Coherence in Matter: from Quarks to Solids, 42. Internationale Universit\"atswochen f\"ur Theoretische Physik, Schladming, Austria, Feb. 28 -- March 6, 2004, submitted to Lecture Notes in Physics, Springer Verlag, 45 page

    Relativistic entanglement of two massive particles

    Full text link
    We describe the spin and momentum degrees of freedom of a system of two massive spin--12\tfrac{1}{2} particles as a 4 qubit system. Then we explicitly show how the entanglement changes between different partitions of the qubits, when considered by different inertial observers. Although the two particle entanglement corresponding to a partition into Alice's and Bob's subsystems is, as often stated in the literature, invariant under Lorentz boosts, the entanglement with respect to other partitions of the Hilbert space on the other hand, is not. It certainly does depend on the chosen inertial frame and on the initial state considered. The change of entanglement arises, because a Lorentz boost on the momenta of the particles causes a Wigner rotation of the spin, which in certain cases entangles the spin- with the momentum states. We systematically investigate the situation for different classes of initial spin states and different partitions of the 4 qubit space. Furthermore, we study the behavior of Bell inequalities for different observers and demonstrate how the maximally possible degree of violation, using the Pauli-Lubanski spin observable, can be recovered by any inertial observer.Comment: 17 pages, 4 figure

    Symmetry protected Z2-quantization and quaternionic Berry connection with Kramers degeneracy

    Get PDF
    As for a generic parameter dependent hamiltonian with the time reversal (TR) invariance, a non Abelian Berry connection with the Kramers (KR) degeneracy are introduced by using a quaternionic Berry connection. This quaternionic structure naturally extends to the many body system with the KR degeneracy. Its topological structure is explicitly discussed in comparison with the one without the KR degeneracy. Natural dimensions to have non trivial topological structures are discussed by presenting explicit gauge fixing. Minimum models to have accidental degeneracies are given with/without the KR degeneracy, which describe the monopoles of Dirac and Yang. We have shown that the Yang monopole is literally a quaternionic Dirac monopole. The generic Berry phases with/without the KR degeneracy are introduced by the complex/quaternionic Berry connections. As for the symmetry protected Z2\mathbb{Z}_2 quantization of these general Berry phases, a sufficient condition of the Z2\mathbb{Z}_2-quantization is given as the inversion/reflection equivalence. Topological charges of the SO(3) and SO(5) nonlinear σ\sigma -models are discussed in their relation to the Chern numbers of the CP1CP^1 and HP1HP^1 models as well.Comment: Submitted for New J. Physics, Special issue on Topological Insulators. 18 pages, 2 figure
    • 

    corecore