226 research outputs found

    Shot Noise of Single-Electron Tunneling in 1D Arrays

    Full text link
    We have used numerical modeling and a semi-analytical calculation method to find the low frequency value S_{I}(0) of the spectral density of fluctuations of current through 1D arrays of small tunnel junctions, using the ``orthodox theory'' of single-electron tunneling. In all three array types studied, at low temperature (kT << eV), increasing current induces a crossover from the Schottky value S_{I}(0)=2e to the ``reduced Schottky value'' S_{I}(0)=2e/N (where N is the array length) at some crossover current I_{c}. In uniform arrays over a ground plane, I_{c} is proportional to exp(-\lambda N), where 1/\lambda is the single-electron soliton length. In arrays without a ground plane, I_{c} decreases slowly with both N and \lambda. Finally, we have calculated the statistics of I_{c} for ensembles of arrays with random background charges. The standard deviation of I_{c} from the ensemble average is quite large, typically between 0.5 and 0.7 of , while the dependence of on N or \lambda is so weak that it is hidden within the random fluctuations of the crossover current.Comment: RevTex. 21 pages of text, 10 postscript figure

    Collective Transport in Arrays of Quantum Dots

    Full text link
    (WORDS: QUANTUM DOTS, COLLECTIVE TRANSPORT, PHYSICAL EXAMPLE OF KPZ) Collective charge transport is studied in one- and two-dimensional arrays of small normal-metal dots separated by tunnel barriers. At temperatures well below the charging energy of a dot, disorder leads to a threshold for conduction which grows linearly with the size of the array. For short-ranged interactions, one of the correlation length exponents near threshold is found from a novel argument based on interface growth. The dynamical exponent for the current above threshold is also predicted analytically, and the requirements for its experimental observation are described.Comment: 12 pages, 3 postscript files included, REVTEX v2, (also available by anonymous FTP from external.nj.nec.com, in directory /pub/alan/dotarrays [as separate files]) [replacement: FIX OF WRONG VERSION, BAD SHAR] March 17, 1993, NEC

    Towards single-electron metrology

    Full text link
    We review the status of the understanding of single-electron transport (SET) devices with respect to their applicability in metrology. Their envisioned role as the basis of a high-precision electrical standard is outlined and is discussed in the context of other standards. The operation principles of single electron transistors, turnstiles and pumps are explained and the fundamental limits of these devices are discussed in detail. We describe the various physical mechanisms that influence the device uncertainty and review the analytical and numerical methods needed to calculate the intrinsic uncertainty and to optimise the fabrication and operation parameters. Recent experimental results are evaluated and compared with theoretical predictions. Although there are discrepancies between theory and experiments, the intrinsic uncertainty is already small enough to start preparing for the first SET-based metrological applications.Comment: 39 pages, 14 figures. Review paper to be published in International Journal of Modern Physics

    Charge Solitons in 1-D Arrays of Serially Coupled Josephson Junctions

    Full text link
    We study a 1-D array of Josephson coupled superconducting grains with kinetic inductance which dominates over the Josephson inductance. In this limit the dynamics of excess Cooper pairs in the array is described in terms of charge solitons, created by polarization of the grains. We analyze the dynamics of these topological excitations, which are dual to the fluxons in a long Josephson junction, using the continuum sine-Gordon model. We find that their classical relativistic motion leads to saturation branches in the I-V characteristic of the array. We then discuss the semi-classical quantization of the charge soliton, and show that it is consistent with the large kinetic inductance of the array. We study the dynamics of a quantum charge soliton in a ring-shaped array biased by an external flux through its center. If the dephasing length of the quantum charge soliton is larger than the circumference of the array, quantum phenomena like persistent current and coherent current oscillations are expected. As the characteristic width of the charge soliton is of the order of 100 microns, it is a macroscopic quantum object. We discuss the dephasing mechanisms which can suppress the quantum behaviour of the charge soliton.Comment: 26 pages, LaTex, 7 Postscript figure

    Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast

    Get PDF
    We consider divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L(Ω)L^\infty(\Omega), ΩRd\Omega \subset \R^d) coefficients a(x)a(x) that, in particular, model media with non-separated scales and high contrast in material properties. We define the flux norm as the L2L^2 norm of the potential part of the fluxes of solutions, which is equivalent to the usual H1H^1-norm. We show that in the flux norm, the error associated with approximating, in a properly defined finite-dimensional space, the set of solutions of the aforementioned PDEs with rough coefficients is equal to the error associated with approximating the set of solutions of the same type of PDEs with smooth coefficients in a standard space (e.g., piecewise polynomial). We refer to this property as the {\it transfer property}. A simple application of this property is the construction of finite dimensional approximation spaces with errors independent of the regularity and contrast of the coefficients and with optimal and explicit convergence rates. This transfer property also provides an alternative to the global harmonic change of coordinates for the homogenization of elliptic operators that can be extended to elasticity equations. The proofs of these homogenization results are based on a new class of elliptic inequalities which play the same role in our approach as the div-curl lemma in classical homogenization.Comment: Accepted for publication in Archives for Rational Mechanics and Analysi
    corecore