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Abstract This paper provides an error analysis of the three-term recurrence relation
(TTRR) Tn+1(x) = 2xTn(x) − Tn−1(x) for the evaluation of the Chebyshev poly-
nomial of the first kind TN(x) in the interval [−1, 1]. We prove that the computed
value of TN(x) from this recurrence is very close to the exact value of the Chebyshev
polynomial TN of a slightly perturbed value of x. The lower and upper bounds for
the function CN(x) = |TN(x)|+ |xT ′

N(x)| are also derived. Numerical examples that
illustrate our theoretical results are given.

Keywords Chebyshev polynomials · Error analysis · Roots of polynomials
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1 Introduction

This paper proves the numerical stability of the three-term recurrence relation
(TTRR) of Chebyshev polynomials of the first kind (Tn(x)):

Tn(x) = 2xTn−1(x) − Tn−2(x), n = 2, 3, . . . , (1)
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where T0(x) = 1, T1(x) = x.
This formula often appears in practical applications. The TTRR is used in

Forsythe’s method for evaluating polynomials in Chebyshev form pN(x) =∑N
k=0 akTk(x). There are several algorithms for evaluating Chebyshev series (see

[1–5, 13]). Clenshaw’s and Forsythe’s algorithms are recommended. Chebyshev
polynomials of the first kind (Tn(x)) are widely used in many applications (see [6,
8, 10, 14]). A desirable property for algorithms is numerical stability (see [12, 17]).
The term stability is sometimes used to refer to the forward or backward analysis of
the algorithm. An error analysis of Clenshaw’s algorithm in the general case was first
provided by D. Elliott in [9]. See also [2–5, 7, 11, 15], where the authors present the
forward error bounds for the evaluation of pN(x) = ∑N

k=0 akTk(x).
In this paper we study the mixed forward-backward stability of the TTRR (see

[12], Section 1.5). A precise definition of mixed forward-backward stability is now
given.

Definition 1 An algorithm W of computing TN(x) is called mixed forward-
backward stable with respect to the data x, if the value T̃N (x) computed by W in
floating point arithmetic satisfies

T̃N (x) = (1 + δN)TN((1 + �N)x) + O(εM
2), |δN |, |�N | ≤ εML, (2)

where L = L(N) is a modestly growing function on N and εM is machine precision.

Simply, the computed value of TN(x) by mixed forward-backward stable algo-
rithm is very close to the exact value of the Chebyshev polynomial TN of a slightly
perturbed value of x. Throughout this paper, we will ignore the terms of order
O(εM

2). Notice that (see, e.g., Lemma 4.1 in [18]) that the property (2) is equivalent
to

|T̃N (x) − TN(x)| ≤ εM L CN(x) + O(εM
2), (3)

where

CN(x) = |TN(x)| + |xT ′
N(x)| = |TN(x)| + N |xUN−1(x)|, (4)

where UN−1(x) denotes the Chebyshev polynomial of the second kind. These
polynomials satisfy the recurrence relations

Un(x) = 2xUn−1(x) − Un−2(x), n = 2, 3, . . . , (5)

where U0(x) = 1, U1(x) = 2x.
The paper has been organized as follows. In Section 2, we recall some basic prop-

erties of the Chebyshev polynomials. In Section 3, we will use these properties in
a derivation of the lower and upper bounds for Cn(x). In Section 4, we present the
error analysis for the TTR. We prove that the TTRR is mixed forward-backward sta-
ble in the sense of (3) (which is equivalent to (2). Finally, in Section 5 we present
some numerical experiments performed in MATLAB.



Numer Algor (2015) 69:785–794 787

2 Preliminaries

We will need some properties of the Chebyshev polynomials (see [14, 16]). For
−1 ≤ x ≤ 1, we have Tn(x) = cos(n�), where � = arccos x and Un−1(x) =
sin(n�)/sin� for 0 < x < 1.

The following identities hold:

Un−1(x) = Tn
′(x)

n
,

Tn(−x) = (−1)nTn(x), Un(−x) = (−1)nUn(x).

The Chebyshev polynomials of the first kind satisfy the following differential
equations;

(1 − x2)T ′′
n (x) − xT ′

n(x) + n2Tn(x) = 0 (6)

and

T 2
n (x) + 1 − x2

n2
T ′

n
2
(x) = 1. (7)

The last equality is a consequence of the trigonometric identity cos2 nθ+sin2 nθ = 1.
For −1 ≤ x ≤ 1 and n = 0, 1, . . . we have the upper bounds

|Tn(x)| ≤ |Tn(1)| = 1, |Un(x)| ≤ |Un(1)| = n + 1 (8)

and for −1 < x < 1

|Un(x)| ≤ 1√
1 − x2

. (9)

The roots (ti) of Tn(x) are distinct and belong to (−1, 1):

ti = cos
(2i − 1)π

2n
, i = 1, 2, . . . , n. (10)

The roots (ui) of T ′
n(x) (i.e. the roots of Un−1(x)) are:

ui = cos
iπ

n
, i = 1, 2, . . . , n − 1. (11)

Then −1 < tn < un−1 < . . . < u1 < t1 < 1 and

Tn(ui) = (−1)i i = 1, 2, . . . , n − 1. (12)

For −1 ≤ x ≤ 1 and m = 0, 1, . . . we get

|T2m+1(x)| ≤ (2m + 1)|x|, |U2m+1(x)| ≤ 2(m + 1)|x|. (13)

3 Lower and upper bounds for Cn(x)

Since Cn(−x) = Cn(x) for all x, we restrict our considerations to the interval [0, 1].
From (8) it follows that Cn(x) ≤ Cn(1) = n2 + 1 for 0 ≤ x ≤ 1. By (11)–(12), we
have Cn(ui) = 1 for i = 1, . . . , n − 1. If n is odd then Cn(0) = 0 (Figs. 1 and 2).
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Fig. 1 Plot of y = C4(x)
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Fig. 2 Plot of y = C5(x)
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Theorem 1 Let n be a natural number. Assume that sn ≤ x ≤ 1, where

sn = 1√
n2 + 1

. (14)

Then we have

Cn(x) = |Tn(x)| + |xT ′
n(x)| ≥ 1. (15)

Proof Notice that the inequality x2 ≥ s2n is equivalent to x2(n2 + 1) ≥ 1, hence

x2 ≥ 1−x2

n2
. From this and (7) we get

C2
n(x) ≥ T 2

n (x) + x2T ′2
n (x) ≥ T 2

n (x) + 1 − x2

n2
T ′

n
2
(x) = 1.

The proof is now complete.

Theorem 2 Let n be a natural number. Assume that 0 ≤ x ≤ sn, where sn is defined
by (14). Then

(i) Cn(x) ≥ n|x| for all n,
(ii) Cn(x) ≥ 1 for even n.

Proof We consider case (i). Clearly, by (14) 1 ≥ n2 x2, and since 0 ≤ x ≤ sn, we get

C2
n(x) ≥ T 2

n (x)+x2T ′2
n (x) ≥ n2x2T 2

n (x)+x2T ′2
n (x) ≥ x2n2

(

T 2
n (x) + 1

n2
T ′

n
2
(x)

)

.

Therefore,

C2
n(x) ≥ x2n2

(

T 2
n (x) + 1 − x2

n2
T ′

n
2
(x)

)

= x2n2,

due to (7). Therefore, Cn(x) ≥ n|x|. This completes the proof of case (i).
Now we consider case (ii). Let n = 2m. We first prove that T2m has no roots in

(0, s2m). By (10), we need to show that

tm = cos
(2m − 1)π

4m
> s2m. (16)

Notice that

tm = cos
(π

2
− π

4m

)
= sin

π

4m
.

Since 0 < � < tan� for all 0 < � < π
2 , we have tan2 � > �2. From this it

follows that sin2 � > �2

1+�2 . Substituting � = π/4m in the above inequality leads to

t2m >
π2

16m2 + π2
>

1

4m2 + 1
= s22m,

so tm > s2m. This finishes the proof of (16).
We see that T2m has no roots in (0, s2m). Moreover, T2m(0) = (−1)m and

T ′
2m(0) = 0. We conclude from (10)–(11) that 0 is the only root of T ′

2m in the inter-
val (−s2m, s2m). Notice that T2m and T ′′

2m are even, i.e. T2m(−x) = T2m(x) and
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T ′′
2m(−x) = T ′′

2m(x) for all x. T ′
2m is odd, that is, T ′

2m(−x) = −T ′
2m(x). Thus we see

that the polynomials T2m and T ′
2m do not change the signs in (0, s2m).

More precisely, if m is even, then for all 0 < x < s2m we have T2m(x) > 0
and T ′

2m(x) < 0, hence C2m(x) = T2m(x) − xT ′
2m(x). Similarly, if m is odd then

T2m(x) < 0 and T ′
2m(x) > 0, so C2m(x) = −T2m(x) + xT ′

2m(x). We see that
C′
2m(x) = −T ′′

2m(x) if m is even and C′
2m(x) = T ′′

2m(x) otherwise.
By (6) for n = 2m, we obtain the formula

(1 − x2)T ′′
2m(x) = xT ′

2m(x) − 2m2T2m(x).

We see that for all 0 < x < s2m we have T ′′
2m(x) < 0 if m is even and T ′′

2m(x) > 0
if m is odd. We conclude that C ′

2m(x) > 0 for any m, so C2m(x) is increasing in the
interval (0, s2m). This gives the lower bound C2m(x) ≥ C2m(0) = 1. The proof of
our theorem is now complete.

4 Error analysis

We analyze the rounding errors in the TTRR. We start with the following lemma.

Lemma 1 Let T̃n(x) denote the quantities computed by the TTRR in floating point
arithmetic fl with machine precision εM . Assume that x is exactly representable in fl
(f l(x) = x) and x ∈ [−1, 1]. Then

|T̃N (x) − TN(x)| ≤ εMEN(x) + O(εM
2), (17)

where

EN(x) =
N∑

n=2

(2|x| |Tn−1(x)| + |Tn(x)|) |UN−n(x)|. (18)

Proof Note that T̃0(x) = 1, T̃1(x) = x and for n = 2, 3, . . . we have

T̃n(x) = (2x T̃n−1(x)(1 + αn) − T̃n−2(x))(1 + βn), |αn|, |βn| ≤ εM.

Therefore,

T̃n(x) = 2x T̃n−1(x) − T̃n−2(x) + ξn, ξn = 2xT̃n−1(x)αn + βn

1 + βn

T̃n(x). (19)

Let en = T̃n(x) − Tn(x). We observe that e0 = e1 = 0 and en = 2xen−1 −
en−2 + ξn for n = 2, 3, . . . , N . From this it follows that eN = T̃N (x) − TN(x) =∑N

n=2 UN−n(x)ξn. Therefore, |eN | ≤ ∑N
n=2 |UN−n(x)| |ξn|. This, together with (19),

leads to
|ξn| ≤ εM (2|x| |Tn−1(x)| + |Tn(x)|) + O(εM

2), (20)

hence

|eN | ≤ εM

N∑

n=2

(2|x| |Tn−1(x)| + |Tn(x)|) |UN−n(x)| + O(εM
2). (21)
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The proof of Lemma 1 is now complete.

Now our task is to bound EN(x).

Theorem 3 Let EN(x) be defined by (18). Then we have

EN(x) ≤ EN(1) = 3N(N − 1)

2
for x ∈ [−1, 1] (22)

and

EN(x) ≤ 3(N − 1)√
1 − x2

for x ∈ (−1, 1). (23)

If N is odd and |x| ≤ sN = 1√
N2+1

then

EN(x) ≤ 5(N − 1)(N + 7)

8
|x|. (24)

Proof It is obvious that for every x ∈ [−1, 1] we have

EN(x) ≤ EN(1) = 3
N∑

n=2

(N − n + 1) = 3N(N − 1)

2
.

This completes the proof of (22).
If −1 < x < 1 then by (8)–(9) and (18) we get

EN(x) ≤ 3
N∑

n=2

1√
1 − x2

= 3(N − 1)√
1 − x2

.

This finishes the proof of (23).
Now assume that N is odd and |x| ≤ sN . We rewrite (18) as follows

EN(x) = AN(x) + BN(x)), (25)

where

AN(x) = 2|x|
N∑

n=2

|Tn−1(x)| |UN−n(x)|, (26)

BN(x) =
N∑

n=2

|Tn(x)| |UN−n(x)|. (27)

Notice that (9) gives

|Uk(x)| ≤ 1
√
1 − s2N

≤ 3

2
for |x| ≤ sN , k = 0, 1, . . . . (28)

This, together with the inequality |Tn−1(x)| ≤ 1, gives

AN(x) ≤ 3|x|(N − 1). (29)
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Table 1 The error (33) for the TTRR

N 8 16 32 64 128 256 512 1024

Error (33) 5.25 11.00 21.78 35.00 66.00 165.00 280.75 679.62

To estimate BN(x) for N = 2m + 1, we split it as follows:

BN(x) =
m∑

k=1

|T2k(x)| |UN−2k(x)| +
m∑

k=1

|T2k+1(x)| |UN−(2k+1)(x)|.

Note that (13) implies the following upper bounds (for the polynomials of the odd
degrees):

|UN−2k(x)| ≤ (N − 2k + 1) |x|, |T2k+1(x)| ≤ (2k + 1) |x|.
From this and (28) it follows that

BN(x) ≤
m∑

k=1

(N − 2k + 1) |x| + 3

2

m∑

k=1

(2k + 1) |x|.

The last inequality, together with (25) and (29), leads to

EN(x) ≤ (3(N − 1) + m(N − m) + 3

2
m(m + 2)) |x|.

Since m = (N − 1)/2, we immediately get (24).

The bounds (22,23) are not new, see Barrio [2, 5]. To our knowledge, the bound
(24) is however new, and allows us to prove the mixed forward-backward stability of
the TTRR for all x ∈ [−1, 1].

By Theorems 1–3 and Lemma 1 we obtain the following theorem.

Theorem 4 The TTRR is mixed forward-backward stable in [−1, 1]. For every N ≥
2 we have

|T̃N (x) − TN(x)| ≤ εM

3N(N − 1)

2
CN(x) + O(εM

2) for x ∈ [−1, 1] (30)

and

|T̃N (x) − TN(x)| ≤ εM 7(N − 1) CN(x) + O(εM
2) for x ∈ [−0.9, 0.9]. (31)

Moreover, if N is odd and |x| ≤ sN = 1√
N2+1

, then

|T̃N (x) − TN(x)| ≤ εM

5(N − 1)(N + 7)

8N
CN(x) + O(εM

2). (32)

We see that L(N) in (2) is of order N in (−1, 1) for x not to close to ±1 and of
order N2 near ±1.
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Table 2 The relative error RN(x)

N 10 102 103 104 105 106

RN(0) 5 50 500 5 · 103 5 · 104 5 · 105
RN(0.5) 1.63 1.96 1.99 1.99 2.00 2.00

RN(0.9) 1.33 1.61 1.48 1.50 1.48 1.75

RN(cos(2π/N)) 14.70 1.51 · 103 1.51 · 105 1.50 · 107 1.62 · 107 4.33 · 106
RN(cos(π/N)) 29.41 3.03 · 103 3.03 · 105 2.91 · 107 8.24 · 106 1.06 · 105
RN(1) 1.33 1.48 1.49 1.49 1.50 1.50

5 Numerical tests

To illustrate our results, we present numerical tests in MATLAB with machine pre-
cision εM = 2−52 ≈ 2.2 · 10−16. We compare the results computed by the TTRR
with the exact values of the Chebyshev polynomial TN(x). They were obtained by
implementing the TTRR in high precision using the VPA (Variable Precision Arith-
metic) function from MATLAB’s Symbolic Math Toolbox, and then rounded to 16th
decimal digits. We compute the relative error

eN = maxx∈S |TN(x) − T̃N (x)|
εM

. (33)

Here S consists of the equally spaced checkpoints t1, t2, . . . , t201 from the interval
[−1, 1], i.e. ti = −1 + (i − 1)/100 for i = 1, 2, . . . , 201 (Table 1). In order to show
that our theoretical bounds are realistic, we evaluated RN(x) = EN(x)/CN(x) for
particular values of x. It is clear that near x = ±1 the values of RN are of order
N2 for large N (Table 2). For example, if x̂ = u1 = cos(π/N) (the root of T ′

N(x))

then x̂ is very close to 1, so EN(x̂) ≈ EN(1) = 3N(N−1)
2 . However, CN(x̂) = 1,

so RN(x̂) ≈ 3N(N−1)
2 . Similar conclusion can be found in [2] for a class of parallel

algorithms to evaluate Chebyshev series.
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