94,523 research outputs found

    Quantum Codes from Toric Surfaces

    Full text link
    A theory for constructing quantum error correcting codes from Toric surfaces by the Calderbank-Shor-Steane method is presented. In particular we study the method on toric Hirzebruch surfaces. The results are obtained by constructing a dualizing differential form for the toric surface and by using the cohomology and the intersection theory of toric varieties. In earlier work the author developed methods to construct linear error correcting codes from toric varieties and derive the code parameters using the cohomology and the intersection theory on toric varieties. This method is generalized in section to construct linear codes suitable for constructing quantum codes by the Calderbank-Shor-Steane method. Essential for the theory is the existence and the application of a dualizing differential form on the toric surface. A.R. Calderbank, P.W. Shor and A.M. Steane produced stabilizer codes from linear codes containing their dual codes. These two constructions are merged to obtain results for toric surfaces. Similar merging has been done for algebraic curves with different methods by A. Ashikhmin, S. Litsyn and M.A. Tsfasman.Comment: IEEE copyrigh

    Alternative method to find orbits in chaotic systems

    Full text link
    We present here a new method which applies well ordered symbolic dynamics to find unstable periodic and non-periodic orbits in a chaotic system. The method is simple and efficient and has been successfully applied to a number of different systems such as the H\'enon map, disk billiards, stadium billiard, wedge billiard, diamagnetic Kepler problem, colinear Helium atom and systems with attracting potentials. The method seems to be better than earlier applied methods.Comment: 5 pages, uuencoded compressed tar PostScript fil

    Critical dynamics of an interacting magnetic nanoparticle system

    Full text link
    Effects of dipole-dipole interactions on the magnetic relaxation have been investigated for three Fe-C nanoparticle samples with volume concentrations of 0.06, 5 and 17 vol%. While both the 5 and 17 vol% samples exhibit collective behavior due to dipolar interactions, only the 17 vol% sample displays critical behavior close to its transition temperature. The behaviour of the 5 vol% sample can be attributed to a mixture of collective and single particle dynamics.Comment: 19 pages, 8 figure

    Reduction of the hydrophobic attraction between charged solutes in water

    Full text link
    We examine the effective force between two nanometer scale solutes in water by Molecular Dynamics simulations. Macroscopic considerations predict a strong reduction of the hydrophobic attraction between solutes when the latter are charged. This is confirmed by the simulations which point to a surprising constancy of the effective force between oppositely charged solutes at contact, while like charged solutes lead to significantly different behavior between positive and negative pairs. The latter exhibit the phenomenon of ``like-charge attraction" previously observed in some colloidal dispersions.Comment: 4 pages, 5 figure

    Clustering and gelation of hard spheres induced by the Pickering effect

    Full text link
    A mixture of hard-sphere particles and model emulsion droplets is studied with a Brownian dynamics simulation. We find that the addition of nonwetting emulsion droplets to a suspension of pure hard spheres can lead to both gas-liquid and fluid-solid phase separations. Furthermore, we find a stable fluid of hard-sphere clusters. The stability is due to the saturation of the attraction that occurs when the surface of the droplets is completely covered with colloidal particles. At larger emulsion droplet densities a percolation transition is observed. The resulting networks of colloidal particles show dynamical and mechanical properties typical of a colloidal gel. The results of the model are in good qualitative agreement with recent experimental findings [E. Koos and N. Willenbacher, Science 331, 897 (2011)] in a mixture of colloidal particles and two immiscible fluids.Comment: 5 figures, 5 page

    Secret Sharing Schemes with a large number of players from Toric Varieties

    Full text link
    A general theory for constructing linear secret sharing schemes over a finite field \Fq from toric varieties is introduced. The number of players can be as large as (q1)r1(q-1)^r-1 for r1r\geq 1. We present general methods for obtaining the reconstruction and privacy thresholds as well as conditions for multiplication on the associated secret sharing schemes. In particular we apply the method on certain toric surfaces. The main results are ideal linear secret sharing schemes where the number of players can be as large as (q1)21(q-1)^2-1. We determine bounds for the reconstruction and privacy thresholds and conditions for strong multiplication using the cohomology and the intersection theory on toric surfaces.Comment: 15 pages, 4 figures. arXiv admin note: text overlap with arXiv:1203.454

    Coherent adiabatic theory of two-electron quantum dot molecules in external spin baths

    Full text link
    We derive an accurate molecular orbital based expression for the coherent time evolution of a two-electron wave function in a quantum dot molecule where the electrons interact with each other, with external time dependent electromagnetic fields and with a surrounding nuclear spin reservoir. The theory allows for direct numerical modeling of the decoherence in quantum dots due to hyperfine interactions. Calculations result in good agreement with recent singlet-triplet dephasing experiments by Laird et. al. [Phys. Rev. Lett. 97, 056801 (2006)], as well as analytical model calculations. Furthermore, it is shown that using a much faster electric switch than applied in these experiments will transfer the initial state to excited states where the hyperfine singlet-triplet mixing is negligible.Comment: 4 pages, 3 figure
    corecore