542 research outputs found

    New results on SIDIS SSA from Jefferson Lab

    Full text link
    We present studies of single-spin and double-spin asymmetries in semi-inclusive electroproduction of pions using the CEBAF 6 GeV polarized electron beam. Kinematic dependences of single and double spin asymmetries have been measured in a wide kinematic range at CLAS with a polarized NH3_3 target. Significant target-spin sin2ϕ\sin2\phi and sinϕ\sin\phi asymmetries have been observed. The hypothesis of factorization has been tested with zz-dependence of the double spin asymmetry.Comment: 4 pages, 6 figure

    Empirical Fit to Inelastic Electron-Deuteron and Electron-Neutron Resonance Region Transverse Cross Sections

    Full text link
    An empirical fit is described to measurements of inclusive inelastic electron-deuteron cross sections in the kinematic r ange of four-momentum transfer 0Q2<100 \le Q^2<10 GeV2^2 and final state invariant mass 1.1<W<3.21.1<W<3.2 GeV. The deuteron fit relies on a fit of the ratio RpR_p of longitudinal to transverse cross sections for the proton, and the assumption Rp=RnR_p=R_n. The underlying fit parameters describe the average cross section for proton and neutron, with a plane-wave impulse approximation used to fit to the deuteron data. An additional term is used to fill in the dip between the quasi-elastic peak and the Δ(1232)\Delta(1232) resonance. The mean deviation of data from the fit is 3%, with less than 4% of the data points deviating from the fit by more than 10%.Comment: 16 pages, 5 figures, submitted to Phys. Rev. C. Text clarified in response to referee comment

    Hadron Spin Dynamics

    Get PDF
    Spin effects in exclusive and inclusive reactions provide an essential new dimension for testing QCD and unraveling hadron structure. Remarkable new experiments from SLAC, HERMES (DESY), and the Jefferson Laboratory present many challenges to theory, including measurements at HERMES and SMC of the single spin asymmetries in pion electroproduction, where the proton is polarized normal to the scattering plane. This type of single spin asymmetry may be due to the effects of rescattering of the outgoing quark on the spectators of the target proton, an effect usually neglected in conventional QCD analyses. Many aspects of spin, such as single-spin asymmetries and baryon magnetic moments are sensitive to the dynamics of hadrons at the amplitude level, rather than probability distributions. I illustrate the novel features of spin dynamics for relativistic systems by examining the explicit form of the light-front wavefunctions for the two-particle Fock state of the electron in QED, thus connecting the Schwinger anomalous magnetic moment to the spin and orbital momentum carried by its Fock state constituents and providing a transparent basis for understanding the structure of relativistic composite systems and their matrix elements in hadronic physics. I also present a survey of outstanding spin puzzles in QCD, particularly the double transverse spin asymmetry A_{NN} in elastic proton-proton scattering, the J/psi to rho-pi puzzle, and J/psi polarization at the Tevatron.Comment: Concluding theory talk presented at SPIN2001, the Third Circum-Pan-Pacific Symposium on High Energy Physics, October, 2001, Beijin

    Self-Consistent Data Analysis of the Proton Structure Function g1 and Extraction of its Moments

    Full text link
    The reanalysis of all available world data on the longitudinal asymmetry A|| is presented. The proton structure function g1 was extracted within a unique framework of data inputs and assumptions. These data allowed for a reliable evaluation of moments of the structure function g1 in the Q2 range from 0.2 up to 30 GeV2. The Q2 evolution of the moments was studied in QCD by means of Operator Product Expansion (OPE).Comment: Proceeding of 3rd International Symposium on the Gerasimov-Drell-Hearn Sum Rule and its extensions, Old Dominion University, Norfolk, Virginia June 2-5, 200

    Higher twist analysis of the proton g_1 structure function

    Get PDF
    We perform a global analysis of all available spin-dependent proton structure function data, covering a large range of Q^2, 1 < Q^2 < 30 GeV^2, and calculate the lowest moment of the g_1 structure function as a function of Q^2. From the Q^2 dependence of the lowest moment we extract matrix elements of twist-4 operators, and determine the color electric and magnetic polarizabilities of the proton to be \chi_E = 0.026 +- 0.015 (stat) + 0.021/-0.024 (sys) and \chi_B = -0.013 -+ 0.007 (stat) - 0.010/+0.012 (sys), respectively.Comment: 6 pages, 2 figures, to appear in Phys. Lett.

    Soft pion theorem for hard near threshold pion production

    Full text link
    We prove new soft pion theorem for the near threshold pion production by a hard electromagnetic probe. This theorem relates various near threshold pion production amplitudes to the nucleon distribution amplitudes. The new soft pion theorem is in a good agreement with the SLAC data for F_2^p(W,Q^2) for W^2 < 1.4 GeV^2 and 7 < Q^2 < 30.7 GeV^2.Comment: 9 pages, revised version, more general analysi

    The Gerasimov-Drell-Hearn Sum Rule and the Spin Structure of the Nucleon

    Full text link
    The Gerasimov-Drell-Hearn sum rule is one of several dispersive sum rules that connect the Compton scattering amplitudes to the inclusive photoproduction cross sections of the target under investigation. Being based on such universal principles as causality, unitarity, and gauge invariance, these sum rules provide a unique testing ground to study the internal degrees of freedom that hold the system together. The present article reviews these sum rules for the spin-dependent cross sections of the nucleon by presenting an overview of recent experiments and theoretical approaches. The generalization from real to virtual photons provides a microscope of variable resolution: At small virtuality of the photon, the data sample information about the long range phenomena, which are described by effective degrees of freedom (Goldstone bosons and collective resonances), whereas the primary degrees of freedom (quarks and gluons) become visible at the larger virtualities. Through a rich body of new data and several theoretical developments, a unified picture of virtual Compton scattering emerges, which ranges from coherent to incoherent processes, and from the generalized spin polarizabilities on the low-energy side to higher twist effects in deep inelastic lepton scattering.Comment: 32 pages, 19 figures, review articl

    Jet Energy Density in Hadron-Hadron Collisions at High Energies

    Full text link
    The average particle multiplicity density dN/deta is the dynamical quantity which reflects some regularities of particle production in low-pT range. The quantity is an important ingredient of z-scaling. Experimental results on charged particle density are available for pp, pA and AA collisions while experimental properties of the jet density are still an open question. The goal of this work is to find the variable which will reflect the main features of the jet production in low transverse energy range and play the role of the scale factor for the scaling function psi(z) and variable z in data z-presentation. The appropriate candidate is the variable we called "scaled jet energy density". Scaled jet energy density is the probability to have a jet with defined ET in defined xT and pseudorapidity regions. The PYTHIA6.2 Monte Carlo generator is used for calculation of scaled jet energy density in proton-proton collisions over a high energy range (sqrt s = 200-14000 GeV) and at eta = 0. The properties of the new variable are discussed and sensitivity to "physical scenarios" applied in the standard Monte Carlo generator is noted. The results of scaled jet energy density at LHC energies are presented and compared with predictions based on z-scaling.Comment: 11 pages, LaTeX, 8 figures, Presented at the XVII International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics & Quantum Chromodynamics", Dubna, Russia, September 27 - October 2, 200
    corecore