542 research outputs found
New results on SIDIS SSA from Jefferson Lab
We present studies of single-spin and double-spin asymmetries in
semi-inclusive electroproduction of pions using the CEBAF 6 GeV polarized
electron beam. Kinematic dependences of single and double spin asymmetries have
been measured in a wide kinematic range at CLAS with a polarized NH target.
Significant target-spin and asymmetries have been
observed. The hypothesis of factorization has been tested with -dependence
of the double spin asymmetry.Comment: 4 pages, 6 figure
Empirical Fit to Inelastic Electron-Deuteron and Electron-Neutron Resonance Region Transverse Cross Sections
An empirical fit is described to measurements of inclusive inelastic
electron-deuteron cross sections in the kinematic r ange of four-momentum
transfer GeV and final state invariant mass GeV.
The deuteron fit relies on a fit of the ratio of longitudinal to
transverse cross sections for the proton, and the assumption . The
underlying fit parameters describe the average cross section for proton and
neutron, with a plane-wave impulse approximation used to fit to the deuteron
data. An additional term is used to fill in the dip between the quasi-elastic
peak and the resonance. The mean deviation of data from the fit
is 3%, with less than 4% of the data points deviating from the fit by more than
10%.Comment: 16 pages, 5 figures, submitted to Phys. Rev. C. Text clarified in
response to referee comment
Hadron Spin Dynamics
Spin effects in exclusive and inclusive reactions provide an essential new
dimension for testing QCD and unraveling hadron structure. Remarkable new
experiments from SLAC, HERMES (DESY), and the Jefferson Laboratory present many
challenges to theory, including measurements at HERMES and SMC of the single
spin asymmetries in pion electroproduction, where the proton is polarized
normal to the scattering plane. This type of single spin asymmetry may be due
to the effects of rescattering of the outgoing quark on the spectators of the
target proton, an effect usually neglected in conventional QCD analyses. Many
aspects of spin, such as single-spin asymmetries and baryon magnetic moments
are sensitive to the dynamics of hadrons at the amplitude level, rather than
probability distributions. I illustrate the novel features of spin dynamics for
relativistic systems by examining the explicit form of the light-front
wavefunctions for the two-particle Fock state of the electron in QED, thus
connecting the Schwinger anomalous magnetic moment to the spin and orbital
momentum carried by its Fock state constituents and providing a transparent
basis for understanding the structure of relativistic composite systems and
their matrix elements in hadronic physics. I also present a survey of
outstanding spin puzzles in QCD, particularly the double transverse spin
asymmetry A_{NN} in elastic proton-proton scattering, the J/psi to rho-pi
puzzle, and J/psi polarization at the Tevatron.Comment: Concluding theory talk presented at SPIN2001, the Third
Circum-Pan-Pacific Symposium on High Energy Physics, October, 2001, Beijin
Self-Consistent Data Analysis of the Proton Structure Function g1 and Extraction of its Moments
The reanalysis of all available world data on the longitudinal asymmetry A||
is presented. The proton structure function g1 was extracted within a unique
framework of data inputs and assumptions. These data allowed for a reliable
evaluation of moments of the structure function g1 in the Q2 range from 0.2 up
to 30 GeV2. The Q2 evolution of the moments was studied in QCD by means of
Operator Product Expansion (OPE).Comment: Proceeding of 3rd International Symposium on the
Gerasimov-Drell-Hearn Sum Rule and its extensions, Old Dominion University,
Norfolk, Virginia June 2-5, 200
Higher twist analysis of the proton g_1 structure function
We perform a global analysis of all available spin-dependent proton structure
function data, covering a large range of Q^2, 1 < Q^2 < 30 GeV^2, and calculate
the lowest moment of the g_1 structure function as a function of Q^2. From the
Q^2 dependence of the lowest moment we extract matrix elements of twist-4
operators, and determine the color electric and magnetic polarizabilities of
the proton to be \chi_E = 0.026 +- 0.015 (stat) + 0.021/-0.024 (sys) and \chi_B
= -0.013 -+ 0.007 (stat) - 0.010/+0.012 (sys), respectively.Comment: 6 pages, 2 figures, to appear in Phys. Lett.
Soft pion theorem for hard near threshold pion production
We prove new soft pion theorem for the near threshold pion production by a
hard electromagnetic probe. This theorem relates various near threshold pion
production amplitudes to the nucleon distribution amplitudes. The new soft pion
theorem is in a good agreement with the SLAC data for F_2^p(W,Q^2) for W^2 <
1.4 GeV^2 and 7 < Q^2 < 30.7 GeV^2.Comment: 9 pages, revised version, more general analysi
The Gerasimov-Drell-Hearn Sum Rule and the Spin Structure of the Nucleon
The Gerasimov-Drell-Hearn sum rule is one of several dispersive sum rules
that connect the Compton scattering amplitudes to the inclusive photoproduction
cross sections of the target under investigation. Being based on such universal
principles as causality, unitarity, and gauge invariance, these sum rules
provide a unique testing ground to study the internal degrees of freedom that
hold the system together. The present article reviews these sum rules for the
spin-dependent cross sections of the nucleon by presenting an overview of
recent experiments and theoretical approaches. The generalization from real to
virtual photons provides a microscope of variable resolution: At small
virtuality of the photon, the data sample information about the long range
phenomena, which are described by effective degrees of freedom (Goldstone
bosons and collective resonances), whereas the primary degrees of freedom
(quarks and gluons) become visible at the larger virtualities. Through a rich
body of new data and several theoretical developments, a unified picture of
virtual Compton scattering emerges, which ranges from coherent to incoherent
processes, and from the generalized spin polarizabilities on the low-energy
side to higher twist effects in deep inelastic lepton scattering.Comment: 32 pages, 19 figures, review articl
Jet Energy Density in Hadron-Hadron Collisions at High Energies
The average particle multiplicity density dN/deta is the dynamical quantity
which reflects some regularities of particle production in low-pT range. The
quantity is an important ingredient of z-scaling. Experimental results on
charged particle density are available for pp, pA and AA collisions while
experimental properties of the jet density are still an open question. The goal
of this work is to find the variable which will reflect the main features of
the jet production in low transverse energy range and play the role of the
scale factor for the scaling function psi(z) and variable z in data
z-presentation. The appropriate candidate is the variable we called "scaled jet
energy density". Scaled jet energy density is the probability to have a jet
with defined ET in defined xT and pseudorapidity regions. The PYTHIA6.2 Monte
Carlo generator is used for calculation of scaled jet energy density in
proton-proton collisions over a high energy range (sqrt s = 200-14000 GeV) and
at eta = 0. The properties of the new variable are discussed and sensitivity to
"physical scenarios" applied in the standard Monte Carlo generator is noted.
The results of scaled jet energy density at LHC energies are presented and
compared with predictions based on z-scaling.Comment: 11 pages, LaTeX, 8 figures, Presented at the XVII International
Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics
& Quantum Chromodynamics", Dubna, Russia, September 27 - October 2, 200
- …
