19 research outputs found

    Study of relativistic bound states for scalar theories in Bethe-Salpeter and Dyson-Schwinger formalism

    Full text link
    The Bethe-Salpeter equation for Wick-Cutkosky like models is solved in dressed ladder approximation. The bare vertex truncation of the Dyson-Schwinger equations for propagators is combined with the dressed ladder Bethe-Salpeter equation for the scalar S-wave bound state amplitudes. With the help of spectral representation the results are obtained directly in Minkowski space. We give a new analytic formula for the resulting equation simplifying the numerical treatment. The bare ladder approximation of Bethe-Salpeter equation is compared with the one with dressed ladder. The elastic electromagnetic form factors is calculated within the relativistic impulse approximation.Comment: 30 pages, 10 figures, accepted for publication in Phys. Rev.

    Solving the Bethe-Salpeter equation for a pseudoscalar meson in Minkowski space

    Full text link
    A new method of solution of the Bethe-Salpeter equation for a pseudoscalar quark-antiquark bound state is proposed. With the help of an integral representation, the results are directly obtained in Minkowski space. Dressing of Green's functions is naturally taken into account, thus providing the possible inclusion of a running coupling constant as well as quark propagators. First numerical results are presented for a simplified ladder approximation

    Schwinger functions and light-quark bound states

    Full text link
    We examine the applicability and viability of methods to obtain knowledge about bound-states from information provided solely in Euclidean space. Rudimentary methods can be adequate if one only requires information about the ground and first excited state and assumptions made about analytic properties are valid. However, to obtain information from Schwinger functions about higher mass states, something more sophisticated is necessary. A method based on the correlator matrix can be dependable when operators are carefully tuned and errors are small. This method is nevertheless not competitive when an unambiguous analytic continuation of even a single Schwinger function to complex momenta is available.Comment: 27 pages, 14 figure

    Variational Worldline Approximation for the Relativistic Two-Body Bound State in a Scalar Model

    Full text link
    We use the worldline representation of field theory together with a variational approximation to determine the lowest bound state in the scalar Wick-Cutkosky model where two equal-mass constituents interact via the exchange of mesons. Self-energy and vertex corrections are included approximately in a consistent way as well as crossed diagrams. Only vacuum-polarization effects of the heavy particles are neglected. In a path integral description of an appropriate current-current correlator an effective, retarded action is obtained by integrating out the meson field. As in the polaron problem we employ a quadratic trial action with variational functions to describe retardation and binding effects through multiple meson exchange.The variational equations for these functions are derived, discussed qualitatively and solved numerically. We compare our results with the ones from traditional approaches based on the Bethe-Salpeter equation and find an enhanced binding contrary to some claims in the literature. For weak coupling this is worked out analytically and compared with results from effective field theories. However, the well-known instability of the model, which usually is ignored, now appears at smaller coupling constants than in the one-body case and even when self-energy and vertex corrections are turned off. This induced instability is investigated analytically and the width of the bound state above the critical coupling is estimated.Comment: 62 pages, 7 figures, FBS style, published versio

    Implications of analyticity to solution of Schwinger-Dyson equations in Minkowski space

    Full text link
    We review some recent developments in nonperturbative studies of quantum field theory (QFT) using the Schwinger-Dyson equations formulated directly in Minkowski space. We begin with the introduction of essential ideas of the integral representation in QFT and a discussion of renormalization in this approach. The technique based on the integral representation of Green's functions is exploited to solve Schwinger-Dyson equations in several quantum field models, eg. in scalar models and in strong coupling QED3+1QED_{3+1} in the quenched and in the unquenched approximation. The phenomenon of dynamical chiral symmetry breaking in regularized theory is touched. In QCD, the analyticity of gluon propagator on the complex momentum square plane is exploited to continue some recent lattice data to timelike momentum axis. We find non-positive absorptive part contribution in the Landau gauge gluon propagator which is in agreement with some other new recent analyzes.Comment: 57 pages, Sections slightly reorganized, one section devoted to CHSB added, references changed, accepted in Few-body System

    Quark Schwinger-Dyson equation in temporal Euclidean space

    Full text link
    We present an elementary nonperturbative method to obtain Green's functions (GFs) for timelike momenta. We assume there are no singularities in the first and third quadrants of the complex plane of space momentum components and perform a 3d analogue of Wick rotation. This procedure defines Greens functions in a timelike Euclidean space. As an example we consider the quark propagator in QCD. While for weak coupling, this method is obviously equivalent to perturbation theory, for a realistic QCD coupling a complex part of the quark mass and renormalization wave function has been spontaneously generated even below the standard perturbative threshold. Therefore, our method favors a confinement mechanism based on the lack of real poles.Comment: 11 pages, grammar and typos correcte

    The MHD nature of ionospheric wave packets excited by the solar terminator

    Full text link
    We obtained the first experimental evidence for the magnetohydrodynamic (MHD) nature of ionospheric medium-scale travelling wave packets (MSTWP). We used data on total electron content (TEC) measurements obtained at the dense Japanese network GPS/GEONET (1220 stations) in 2008-2009. We found that the diurnal, seasonal and spectral MSTWP characteristics are specified by the solar terminator (ST) dynamics. MSTWPs are the chains of narrow-band TEC oscillations with single packet's duration of about 1-2 hours and oscillation periods of 10-20 minutes. Their total duration is about 4--6 hours. The MSTWP spatial structure is characterized by a high degree of anisotropy and coherence at the distance of more than 10 wavelengths. The MSTWP direction of travelling is characterized by a high directivity regardless of seasons. Occurrence rate of daytime MSTWPs is high in winter and during equinoxes. Occurrence rate of nighttime MSTIDs has its peak in summer. These features are consistent with previous MS travelling ionosphere disturbance (TID) statistics obtained from 630-nm airglow imaging observations in Japan. In winter, MSTWPs in the northern hemisphere are observed 3-4 hours after the morning ST passage. In summer, MSTWPs are detected 1.5-2 hours before the evening ST occurrence at the point of observations, at the moment of the evening ST passage in the magneto-conjugate point. Both the high Q-factor of oscillatory system and synchronization of MSTWP occurrence with the solar terminator passage at the point of observations and in the magneto-conjugate area testify the MHD nature of ST-excited MSTWP generation. The obtained results are the first experimental evidence for the hypothesis of the ST-generated ion sound waves.Comment: 12 pages, 3 figure

    Persistence of the planetary wave type oscillations in <i>fo</i>F2 over Europe

    No full text
    Planetary waves are oscillations of very predominantly tropospheric origin with typical periods of about 2–30 days. Their dominant zonal wave numbers are 1, 2 and 3, i.e. the waves are of large-scale (global) character. The planetary wave type oscillations have been observed in the lower and middle atmosphere but also in the ionosphere, including the ionospheric F2-layer. Here, we deal only with the oscillations analyzed for four European stations over a solar cycle with the use of the Meyer and Morlet wavelet transforms. Waves with periods near 5, 10 and 16 days are studied. Only events with a duration of three wave-cycles and more are considered. The 5-day period wave events display a typical duration of 4 cycles, while 10- and 16-day wave events are less persistent, with a typical duration of about 3.5 cycles and 3 cycles, respectively. The persistence pattern in terms of number of cycles and in terms of number of days is different. In terms of number of cycles, the typical persistence of oscillations decreases with increasing period. On the other hand, in terms of number of days the typical persistence evidently increases with increasing period. The spectral distribution of event duration is too broad to allow for a reasonable prediction of event duration. Thus, the predictability of the planetary wave type oscillations in foF2 seems to be very questionable.Key words. Ionosphere (ionosphere-atmosphere interaction, mid-latitude ionosphere, ionospheric disturbances) – Meteorology and atmospheric dynamics (waves and tides
    corecore