6 research outputs found

    Development and internal validation of the multivariable CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) clinical risk prediction model

    Get PDF
    Background: Intensive care unit (ICU) outcome prediction models, such as Acute Physiology And Chronic Health Evaluation (APACHE), were designed in general critical care populations and their use in obstetric populations is contentious. The aim of the CIPHER (Collaborative Integrated Pregnancy High-dependency Estimate of Risk) study was to develop and internally validate a multivariable prognostic model calibrated specifically for pregnant or recently delivered women admitted for critical care. Methods: A retrospective observational cohort was created for this study from 13 tertiary facilities across five high-income and six low- or middle-income countries. Women admitted to an ICU for more than 24 h during pregnancy or less than 6 weeks post-partum from 2000 to 2012 were included in the cohort. A composite primary outcome was defined as maternal death or need for organ support for more than 7 days or acute life-saving intervention. Model development involved selection of candidate predictor variables based on prior evidence of effect, availability across study sites, and use of LASSO (Least Absolute Shrinkage and Selection Operator) model building after multiple imputation using chained equations to address missing data for variable selection. The final model was estimated using multivariable logistic regression. Internal validation was completed using bootstrapping to correct for optimism in model performance measures of discrimination and calibration. Results: Overall, 127 out of 769 (16.5%) women experienced an adverse outcome. Predictors included in the final CIPHER model were maternal age, surgery in the preceding 24 h, systolic blood pressure, Glasgow Coma Scale score, serum sodium, serum potassium, activated partial thromboplastin time, arterial blood gas (ABG) pH, serum creatinine, and serum bilirubin. After internal validation, the model maintained excellent discrimination (area under the curve of the receiver operating characteristic (AUROC) 0.82, 95% confidence interval (CI) 0.81 to 0.84) and good calibration (slope of 0.92, 95% CI 0.91 to 0.92 and intercept of −0.11, 95% CI −0.13 to −0.08). Conclusions: The CIPHER model has the potential to be a pragmatic risk prediction tool. CIPHER can identify critically ill pregnant women at highest risk for adverse outcomes, inform counseling of patients about risk, and facilitate bench-marking of outcomes between centers by adjusting for baseline risk.Medicine, Faculty ofOther UBCNon UBCAnesthesiology, Pharmacology and Therapeutics, Department ofFamily Practice, Department ofMedicine, Department ofObstetrics and Gynaecology, Department ofReviewedFacult

    Assessment of functional capacity before major non-cardiac surgery: an international, prospective cohort study.

    No full text
    BACKGROUND: Functional capacity is an important component of risk assessment for major surgery. Doctors' clinical subjective assessment of patients' functional capacity has uncertain accuracy. We did a study to compare preoperative subjective assessment with alternative markers of fitness (cardiopulmonary exercise testing [CPET], scores on the Duke Activity Status Index [DASI] questionnaire, and serum N-terminal pro-B-type natriuretic peptide [NT pro-BNP] concentrations) for predicting death or complications after major elective non-cardiac surgery. METHODS: We did a multicentre, international, prospective cohort study at 25 hospitals: five in Canada, seven in the UK, ten in Australia, and three in New Zealand. We recruited adults aged at least 40 years who were scheduled for major non-cardiac surgery and deemed to have one or more risk factors for cardiac complications (eg, a history of heart failure, stroke, or diabetes) or coronary artery disease. Functional capacity was subjectively assessed in units of metabolic equivalents of tasks by the responsible anaesthesiologists in the preoperative assessment clinic, graded as poor (10). All participants also completed the DASI questionnaire, underwent CPET to measure peak oxygen consumption, and had blood tests for measurement of NT pro-BNP concentrations. After surgery, patients had daily electrocardiograms and blood tests to measure troponin and creatinine concentrations until the third postoperative day or hospital discharge. The primary outcome was death or myocardial infarction within 30 days after surgery, assessed in all participants who underwent both CPET and surgery. Prognostic accuracy was assessed using logistic regression, receiver-operating-characteristic curves, and net risk reclassification. FINDINGS: Between March 1, 2013, and March 25, 2016, we included 1401 patients in the study. 28 (2%) of 1401 patients died or had a myocardial infarction within 30 days of surgery. Subjective assessment had 19·2% sensitivity (95% CI 14·2-25) and 94·7% specificity (93·2-95·9) for identifying the inability to attain four metabolic equivalents during CPET. Only DASI scores were associated with predicting the primary outcome (adjusted odds ratio 0·96, 95% CI 0·83-0·99; p=0·03). INTERPRETATION: Subjectively assessed functional capacity should not be used for preoperative risk evaluation. Clinicians could instead consider a measure such as DASI for cardiac risk assessment. FUNDING: Canadian Institutes of Health Research, Heart and Stroke Foundation of Canada, Ontario Ministry of Health and Long-Term Care, Ontario Ministry of Research, Innovation and Science, UK National Institute of Academic Anaesthesia, UK Clinical Research Collaboration, Australian and New Zealand College of Anaesthetists, and Monash University.This study was supported by grants from the Canadian Institutes of Health Research, Heart and Stroke Foundation of Canada, Ontario Ministry of Health and Long-Term Care, Ontario Ministry of Research, Innovation and Science, UK National Institute of Academic Anaesthesia, UK Clinical Research Collaboration, Australian and New Zealand College of Anaesthetists, and Monash University (Melbourne, VIC, Australia). DNW is supported by a New Investigator Award from the Canadian Institutes of Health Research. DNW and BHC are partly supported by Merit Awards from the Department of Anesthesia at the University of Toronto. RMP is a Career Development Fellow for the British Journal of Anaesthesia and Royal College of Anaesthetists, and a professor for the UK National Institute for Health Research. TEFA is a clinical research training fellow for the UK Medical Research Council and British Journal of Anaesthesia. MPWG holds the British Oxygen Company Chair of Anaesthesia of the Royal College of Anaesthetists, which is awarded by the UK National Institute of Academic Anaesthesia. We thank the Li Ka Shing Knowledge Institute of St Michael's Hospital (Toronto, ON, Canada) for generously supporting the costs of international trial insurance for this study, and all the participating patients and staff across the 25 study sites
    corecore