50 research outputs found
Recommended from our members
Progress on a cryogenically cooled RF gun polarized electron source
RF guns have proven useful in multiple accelerator applications. An RF gun capable of producing polarized electrons is an attractive electron source for the ILC or an electron-ion collider. Producing such a gun has proven elusive. The NEA GaAs photocathode needed for polarized electron production is damaged by the vacuum environment in an RF gun. Electron and ion back bombardment can also damage the cathode. These problems must be mitigated before producing an RF gun polarized electron source. In this paper we report continuing efforts to improve the vacuum environment in a normal conducting RF gun by cooling it with liquid nitrogen after a high temperature vacuum bake out. We also report on a design of a cathode preparation chamber to produce bulk GaAs photocathodes for testing in such a gun. Future directions are also discussed
First observation of the exchange of transverse and longitudinal emittances
An experimental program to demonstrate a novel phase space manipulation in
which the horizontal and longitudinal emittances of a particle beam are
exchanged has been completed at the Fermilab A0 Photoinjector. A new beamline,
consisting of a TM110 deflecting mode cavity flanked by two horizontally
dispersive doglegs has been installed. We report on the first direct
observation of transverse and longitudinal emittance exchange
Transverse to longitudinal emittance exchange beam line at the A0 photo injector
The FNAL A0 Photoinjector is being reconfigured to test the principle of transverse to longitudinal emittance exchange as proposed by Cornacchia and Emma, Kim and Sessler, and others. The ability to perform such an exchange could have major advantages to FELs by reducing the transverse emittance. Several schemes to carry out the exchange are possible and will be reported separately. At the Fermilab A0 Photoinjector we are constructing a beamline to demonstrate this transverse to longitudinal emittance exchange. This beamline will consist of a dogleg, a TM{sub 110} 5 cell copper cavity, and another dogleg. The beamline is designed to reuse the bunch compressor dipoles of the photoinjector, along with some existing diagnostics. Beamline layout and simulations are presented. Emittance dilution effects are also discussed
Recommended from our members
Optical transition radiation interferometry for A0 photoinjector
A charged particle passing through the boundary of two medias with different permittivity values generates Transition Radiation (TR), [1]. The TR is caused by a variation of the particle electric field with variation of the permittivity. The TR for relativistic particles has a wide spectrum with a significant portion in the optical range. The Optical Transition Radiation (OTR) is widely used for a beam profile monitoring and measurements of a beam size. Moreover, OTR can be used to characterize the energy, energy spread and transverse angles in the beam by employing the interference of the OTR from two thin films [2] inserted in the beam trajectory. This method has been applied in number of works [3-5] demonstrating high results and good coincidence in measurements and calculations. In this paper we present and discuss in details a simulation of the interference pattern in several experimental setups. We consider the main optical effects, for diagnostics for the beam properties at A0 Photoinjector and the ILC module test area (NML) in a wide range of electron beam energy. In this paper, we first derive the OTR intensity formula for a single film at 90 degrees to the beam, then for two films at normal incidence, and finally with films at 45 degree incidence to the beam. The last section illustrates application with beam parameters like those at the A0 Photoinjector (electron energy 15 MeV)
Making Micro- and Nano-beams by Channeling in Micro- and Nano-structures
A particle beam of very small cross-section is useful in many accelerator
applications including biological and medical ones. We show the capability of
the channeling technique using a micron-sized structure on a surface of a
single crystal, or using a nanotube, to produce beam of a cross-section down to
1 square micrometer (or nanometer). The channeled beam can be deflected and
thus well separated in angle and space from the primary and scattered
particles. Monte Carlo simulation is done to evaluate the characteristics of a
channeled microbeam. Emittances down to 0.1-0.001 nanometer radian, and flux up
to 1 million particles per square micron per second, can be achieved for
protons and ions.Comment: 8 pages, 4 figure
Recommended from our members
A copper 3.9 GHz TM110 cavity for emittance exchange
An experiment is being developed at the FNAL Photoinjector Lab to demonstrate the exchange of longitudinal emittance with a transverse horizontal emittance. The longitudinal electric field of a TM{sub 110} cavity vanishes on axis and increases linearly with transverse displacement. This 'shearing' electric field is pivotal to the exchange. The design of this TM{sub 110} cavity is a variant of the Fermilab 3.9 GHz superconducting deflecting mode cavity; however, the cavity was constructed of OFHC copper. The authors report on the construction, field flatness, polarization and high power testing of a TM{sub 110} cavity
Observations of underdense plasma lens focusing of relativistic electron beams
Focusing of a 15 MeV, 19 nC electron bunch by an underdense plasma lens operated just beyond the threshold of the underdense condition has been demonstrated in experiments at the Fermilab NICADD Photoinjector Laboratory (FNPL). The strong 1.9 cm focal-length plasma-lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. Analysis of the beam-envelope evolution observed near the beam waist shows that the spherical aberrations of this underdense lens are lower than those of an overdense plasma lens, as predicted by theory. Correlations between the beam charge and the properties of the beam focus corroborate this conclusion
Results from the UCLA/FNPL underdense plasma lens experiment
A gaussian underdense plasma lens with peak density 5 x 10{sup 12} cm{sup -3} and a full width half maximum (FWHM) length of 2.2 cm has been used to focus a relativistic electron beam. This plasma lens is equivalent in strength to a quadrupole magnet with a 150 T/m field gradient. The lens focused a 15 MeV, 16 nC electron beam with initial dimensions {sigma}{sub x,y} {approx} 650 {micro}m and {sigma}{sub z} {approx} 6.5 mm onto an optical transition radiation (OTR) screen {approx}2 cm downstream of the lens. The average transverse area of the plasma focused electron beam was typically demagnified by a factor of 23. The evolution of the beam envelope in the area near the beam waist was measured for both round beams and asymmetric beams with x:y aspect ratios as large as 1:5. The light from the OTR screen in the round beam case was also imaged into a streak camera in order to directly measure the correlation between z and {sigma}{sub r} within the beam
UCLA/FNPL Underdense Plasma Lens Experiment: Results and Analysis
Focusing of a 15 MeV, 16 nC electron bunch by a gaussian underdense plasma lens operated just beyond the threshold of the underdense condition has been demonstrated. The strong 1.9 cm focal length plasma lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. Analysis of the beam envelope evolution observed near the beam waist shows that the spherical aberrations of this underdense lens are lower than those of an overdense plasma lens, as predicted by theory. Time resolved measurements of the focused electron bunch are also reported and compared to simulations