16,451 research outputs found

    Yang-Mills Flow and Uniformization Theorems

    Get PDF
    We consider a parabolic-like systems of differential equations involving geometrical quantities to examine uniformization theorems for two- and three-dimensional closed orientable manifolds. We find that in the two-dimensional case there is a simple gauge theoretic flow for a connection built from a Riemannian structure, and that the convergence of the flow to the fixed points is consistent with the Poincare Uniformization Theorem. We construct a similar system for the three-dimensional case. Here the connection is built from a Riemannian geometry, an SO(3) connection and two other 1-form fields which take their values in the SO(3) algebra. The flat connections include the eight homogeneous geometries relevant to the three-dimensional uniformization theorem conjectured by W. Thurston. The fixed points of the flow include, besides the flat connections (and their local deformations), non-flat solutions of the Yang-Mills equations. These latter "instanton" configurations may be relevant to the fact that generic 3-manifolds do not admit one of the homogeneous geometries, but may be decomposed into "simple 3-manifolds" which do.Comment: 21 pages, Latex, 5 Postscript figures, uses epsf.st

    Standardization and qualification of computer programs for circuit design

    Get PDF
    Study presents methods and initial procedures which may be obtained for development of more efficient uniform network analysis input language and theoretical tools to prove equivalence of data representations

    Twisted and Nontwisted Bifurcations Induced by Diffusion

    Full text link
    We discuss a diffusively perturbed predator-prey system. Freedman and Wolkowicz showed that the corresponding ODE can have a periodic solution that bifurcates from a homoclinic loop. When the diffusion coefficients are large, this solution represents a stable, spatially homogeneous time-periodic solution of the PDE. We show that when the diffusion coefficients become small, the spatially homogeneous periodic solution becomes unstable and bifurcates into spatially nonhomogeneous periodic solutions. The nature of the bifurcation is determined by the twistedness of an equilibrium/homoclinic bifurcation that occurs as the diffusion coefficients decrease. In the nontwisted case two spatially nonhomogeneous simple periodic solutions of equal period are generated, while in the twisted case a unique spatially nonhomogeneous double periodic solution is generated through period-doubling. Key Words: Reaction-diffusion equations; predator-prey systems; homoclinic bifurcations; periodic solutions.Comment: 42 pages in a tar.gz file. Use ``latex2e twisted.tex'' on the tex files. Hard copy of figures available on request from [email protected]

    Symmetries of supergravity black holes

    Full text link
    We investigate Killing tensors for various black hole solutions of supergravity theories. Rotating black holes of an ungauged theory, toroidally compactified heterotic supergravity, with NUT parameters and two U(1) gauge fields are constructed. If both charges are set equal, then the solutions simplify, and then there are concise expressions for rank-2 conformal Killing-Stackel tensors. These are induced by rank-2 Killing-Stackel tensors of a conformally related metric that possesses a separability structure. We directly verify the separation of the Hamilton-Jacobi equation on this conformally related metric, and of the null Hamilton-Jacobi and massless Klein-Gordon equations on the "physical" metric. Similar results are found for more general solutions; we mainly focus on those with certain charge combinations equal in gauged supergravity, but also consider some other solutions.Comment: 36 pages; v2: minor changes; v3: slightly shorte

    Generation of a train of ultrashort pulses using periodic waves in tapered photonic crystal fibres

    Get PDF
    Funding This work was supported by the Ministry of Education , Nigeria for financial support through the TETFUND scholarship 55 scheme; CSIR [grant number 03(1264)/12/EMR-II].Peer reviewedPostprin

    Macroscopic objects in quantum mechanics: A combinatorial approach

    Full text link
    Why we do not see large macroscopic objects in entangled states? There are two ways to approach this question. The first is dynamic: the coupling of a large object to its environment cause any entanglement to decrease considerably. The second approach, which is discussed in this paper, puts the stress on the difficulty to observe a large scale entanglement. As the number of particles n grows we need an ever more precise knowledge of the state, and an ever more carefully designed experiment, in order to recognize entanglement. To develop this point we consider a family of observables, called witnesses, which are designed to detect entanglement. A witness W distinguishes all the separable (unentangled) states from some entangled states. If we normalize the witness W to satisfy |tr(W\rho)| \leq 1 for all separable states \rho, then the efficiency of W depends on the size of its maximal eigenvalue in absolute value; that is, its operator norm ||W||. It is known that there are witnesses on the space of n qbits for which ||W|| is exponential in n. However, we conjecture that for a large majority of n-qbit witnesses ||W|| \leq O(\sqrt{n logn}). Thus, in a non ideal measurement, which includes errors, the largest eigenvalue of a typical witness lies below the threshold of detection. We prove this conjecture for the family of extremal witnesses introduced by Werner and Wolf (Phys. Rev. A 64, 032112 (2001)).Comment: RevTeX, 14 pages, some additions to the published version: A second conjecture added, discussion expanded, and references adde
    corecore