91,032 research outputs found

    Study on the spectrum of the injected relativistic protons

    Full text link
    About 10TeV gamma-ray emission within 10 pc region from the Galactic Center had been reported by 4 independent groups. Considering that this TeV gamma-ray emission is produced via a hadronic model, and the relativistic protons came from the tidal disruption of stars by massive black holes, we investigate the spectral nature of the injected relativistic protons required by the hadronic model. The calculation was carried on the tidal disruption of the different types of stars and the different propagation mechanisms of protons in the interstellar medium. Compared with the observation data from HESS, we find for the best fitting that the power-law index of the spectrum of the injected protons is about -1.9, when a red giant star is tidally disrupted, and the effective confinement of protons diffusion mechanism is adopted.Comment: 2 pages, IAU Symposium 25

    Multiple phase slips phenomena in mesoscopic superconducting rings

    Full text link
    We investigate the behavior of a mesoscopic one-dimensional ring in an external magnetic field by simulating the time dependent Ginzburg-Landau equations with periodic boundary conditions. We analyze the stability and the different possible evolutions for the phase slip phenomena starting from a metastable state. We find a stability condition relating the winding number of the initial solution and the number of flux quanta penetrating the ring. The analysis of multiple phase slips solutions is based on analytical results and simulations. The role of the ratio of two characteristic times u is studied for the case of a multiple phase slips transition. We found out that if u>>1, consecutive multiple phase slips will be more favorable than simultaneous ones. If u>1 is often a necessary condition to reach the ground state. The influence of the Langevin noise on the kinetics of the phase transition is discussed.Comment: 8 pages, 6 figure

    Self-trapping of a Fermi super-fluid in a double-well potential in the BEC-unitarity crossover

    Full text link
    We derive a generalized Gross-Pitaevskii density-functional equation appropriate to study the Bose-Einstein condensate (BEC) of dimers formed of singlet spin-half Fermi pairs in the BEC-unitarity crossover while the dimer-dimer scattering length aa changes from 0 to ∞\infty. Using an effective one-dimensional form of this equation, we study the phenomenon of dynamical self-trapping of a cigar-shaped Fermi super-fluid in the entire BEC-unitarity crossover in a double-well potential. A simple two-mode model is constructed to provide analytical insights. We also discuss the consequence of our study on the self-trapping of an atomic BEC in a double-well potential.Comment: 10 pages, 9 figure

    Scalable Text and Link Analysis with Mixed-Topic Link Models

    Full text link
    Many data sets contain rich information about objects, as well as pairwise relations between them. For instance, in networks of websites, scientific papers, and other documents, each node has content consisting of a collection of words, as well as hyperlinks or citations to other nodes. In order to perform inference on such data sets, and make predictions and recommendations, it is useful to have models that are able to capture the processes which generate the text at each node and the links between them. In this paper, we combine classic ideas in topic modeling with a variant of the mixed-membership block model recently developed in the statistical physics community. The resulting model has the advantage that its parameters, including the mixture of topics of each document and the resulting overlapping communities, can be inferred with a simple and scalable expectation-maximization algorithm. We test our model on three data sets, performing unsupervised topic classification and link prediction. For both tasks, our model outperforms several existing state-of-the-art methods, achieving higher accuracy with significantly less computation, analyzing a data set with 1.3 million words and 44 thousand links in a few minutes.Comment: 11 pages, 4 figure

    Generalized Noiseless Quantum Codes utilizing Quantum Enveloping Algebras

    Full text link
    A generalization of the results of Rasetti and Zanardi concerning avoiding errors in quantum computers by using states preserved by evolution is presented. The concept of dynamical symmetry is generalized from the level of classical Lie algebras and groups to the level of dynamical symmetry based on quantum Lie algebras and quantum groups (in the sense of Woronowicz). A natural connection is proved between states preserved by representations of a quantum group and states preserved by evolution with dynamical symmetry of the appropriate universal enveloping algebra. Illustrative examples are discussed.Comment: 10 pages, LaTeX, 2 figures Postscrip

    Dynamical Response of Nanomechanical Oscillators in Immiscible Viscous Fluid for in vitro Biomolecular Recognition

    Full text link
    Dynamical response of nanomechanical cantilever structures immersed in a viscous fluid is important to in vitro single-molecule force spectroscopy, biomolecular recognition of disease-specific proteins, and the detection of microscopic dynamics of proteins. Here we study the stochastic response of biofunctionalized nanomechanical cantilevers beam in a viscous fluid. Using the fluctuation-dissipation theorem we derive an exact expression for the spectral density of the displacement and a linear approximation for the resonance frequency shift. We find that in a viscous solution the frequency shift of the nanoscale cantilever is determined by surface stress generated by biomolecular interaction with negligible contributions from mass loading.Comment: 4 pages, 2 figures, RevTex4. See http://nano.bu.edu/ for related paper

    The PPARγ Agonist Rosiglitazone Suppresses Syngeneic Mouse SCC (Squamous Cell Carcinoma) Tumor Growth through an Immune-Mediated Mechanism

    Get PDF
    Recent evidence suggests that PPARγ agonists may promote anti-tumor immunity. We show that immunogenic PDV cutaneous squamous cell carcinoma (CSCC) tumors are rejected when injected intradermally at a low cell number (1 × 106) into immune competent syngeneic hosts, but not immune deficient mice. At higher cell numbers (5 × 106 PDV cells), progressively growing tumors were established in 14 of 15 vehicle treated mice while treatment of mice with the PPARγ agonist rosiglitazone resulted in increased tumor rejection (5 of 14 tumors), a significant decrease in PDV tumor size, and a significant decrease in tumor cell Ki67 labeling. Rosiglitazone treatment had no effect on tumor rejection, tumor volume or PDV tumor cell proliferation in immune deficient NOD.CB17-PrkdcSCID/J mice. Rosiglitazone treatment also promoted an increase in tumor infiltrating CD3+ T-cells at both early and late time points. In contrast, rosiglitazone treatment had no significant effect on myeloid cells expressing either CD11b or Gr-1 but suppressed a late accumulation of myeloid cells expressing both CD11b and Gr-1, suggesting a potential role for CD11b+Gr-1+ myeloid cells in the late anti-tumor immune response. Overall, our data provides evidence that the PPARγ agonist rosiglitazone promotes immune-mediated anti-neoplastic activity against tumors derived from this immunogenic CSCC cell line

    Fano Effect through Parallel-coupled Double Coulomb Islands

    Full text link
    By means of the non-equilibrium Green function and equation of motion method, the electronic transport is theoretically studied through a parallel-coupled double quantum dots(DQD) in the presence of the on-dot Coulomb correlation, with an emphasis put on the quantum interference. It has been found that in the Coulomb blockage regime, the quantum interference between the bonding and antiboding DQD states or that between their Coulomb blockade counterparts may result in the Fano resonance in the conductance spectra, and the Fano peak doublet may be observed under certain non-equilibrium condition. The possibility of manipulating the Fano lineshape is predicted by tuning the dot-lead coupling and magnetic flux threading the ring connecting the dots and leads. Similar to the case without Coulomb interaction, the direction of the asymmetric tail of Fano lineshape can be flipped by the external field. Most importantly, by tuning the magnetic flux, the function of four relevant states can be interchanged, giving rise to the swap effect, which might play a key role as a qubit in the quantum computation.Comment: 7 pages, 5 figure
    • …
    corecore