22,940 research outputs found

    Field-induced structure transformation in electrorheological solids

    Full text link
    We have computed the local electric field in a body-centered tetragonal (BCT) lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to examine the effects of a structure transformation on the local field strength. For the ground state of an electrorheological solid of hard spheres, we identified a novel structure transformation from the BCT to the face-centered cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard sphere constraint. In contrast to the previous results, the local field exhibits a non-monotonic transition from BCT to FCC. As c increases from the BCT ground state, the local field initially decreases rapidly towards the isotropic value at the body-centered cubic lattice, decreases further, reaching a minimum value and increases, passing through the isotropic value again at an intermediate lattice, reaches a maximum value and finally decreases to the FCC value. An experimental realization of the structure transformation is suggested. Moreover, the change in the local field can lead to a generalized Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.

    Nonlinear ac response of anisotropic composites

    Full text link
    When a suspension consisting of dielectric particles having nonlinear characteristics is subjected to a sinusoidal (ac) field, the electrical response will in general consist of ac fields at frequencies of the higher-order harmonics. These ac responses will also be anisotropic. In this work, a self-consistent formalism has been employed to compute the induced dipole moment for suspensions in which the suspended particles have nonlinear characteristics, in an attempt to investigate the anisotropy in the ac response. The results showed that the harmonics of the induced dipole moment and the local electric field are both increased as the anisotropy increases for the longitudinal field case, while the harmonics are decreased as the anisotropy increases for the transverse field case. These results are qualitatively understood with the spectral representation. Thus, by measuring the ac responses both parallel and perpendicular to the uniaxial anisotropic axis of the field-induced structures, it is possible to perform a real-time monitoring of the field-induced aggregation process.Comment: 14 pages and 4 eps figure

    A New Computer Approach to Mixed Feature Classification for Forestry Application

    Get PDF
    A new computer approach for mapping mixed forest features (i.e., classes, types) from computes classification maps is presented in both theory and application. This approach is particularly useful and applicable to forestry stand mapping, where small areas are required to be absorbed into the surrounding to form homogeneous stands, and where mixed stands contain mixed proportions of different species of trees. Previous studies involving LANDSAT data show that mixed pine-hardwood stands are often erroneously classified as either pine or hardwood. The present work utilizes a modification and an iterative application of a previously developed computer program called CLEAN . The program CLEAN was tested on binary (2 classes, labeled 0 or 1) classification images. The modification called GETMIX operates on a multi-class image and works on one prespecified class in any one application. In any iteration, small sets of pixels with labels other than the prespecified class are eliminated, while small sets of pixels of the prespecified class are retained and have their labels temporarily changed to a new unique class. This new iterative approach was tested on LANDSAT-1 data over Sam Houston National Forest, and proved to be successful in mapping those mixed softwood/hardwood stands which were unidentifiable previously. Also due to the cleaning effect of the program GETMIX, the spotty appearance on computer classification maps was smoothed, resulting in postprocessed maps that more closely resembled resource maps

    A size of ~1 AU for the radio source Sgr A* at the centre of the Milky Way

    Get PDF
    Although it is widely accepted that most galaxies have supermassive black holes (SMBHs) at their centers^{1-3}, concrete proof has proved elusive. Sagittarius A* (Sgr A*)^4, an extremely compact radio source at the center of our Galaxy, is the best candidate for proof^{5-7}, because it is the closest. Previous Very Long Baseline Interferometry (VLBI) observations (at 7mm) have detected that Sgr A* is ~2 astronomical unit (AU) in size^8, but this is still larger than the "shadow" (a remarkably dim inner region encircled by a bright ring) arising from general relativistic effects near the event horizon^9. Moreover, the measured size is wavelength dependent^{10}. Here we report a radio image of Sgr A* at a wavelength of 3.5mm, demonstrating that its size is \~1 AU. When combined with the lower limit on its mass^{11}, the lower limit on the mass density is 6.5x10^{21} Msun pc^{-3}, which provides the most stringent evidence to date that Sgr A* is an SMBH. The power-law relationship between wavelength and intrinsic size (The size is proportional to wavelength^{1.09}), explicitly rules out explanations other than those emission models with stratified structure, which predict a smaller emitting region observed at a shorter radio wavelength.Comment: 18 pages, 4 figure

    Multi-Prover Commitments Against Non-Signaling Attacks

    Get PDF
    We reconsider the concept of multi-prover commitments, as introduced in the late eighties in the seminal work by Ben-Or et al. As was recently shown by Cr\'{e}peau et al., the security of known two-prover commitment schemes not only relies on the explicit assumption that the provers cannot communicate, but also depends on their information processing capabilities. For instance, there exist schemes that are secure against classical provers but insecure if the provers have quantum information processing capabilities, and there are schemes that resist such quantum attacks but become insecure when considering general so-called non-signaling provers, which are restricted solely by the requirement that no communication takes place. This poses the natural question whether there exists a two-prover commitment scheme that is secure under the sole assumption that no communication takes place; no such scheme is known. In this work, we give strong evidence for a negative answer: we show that any single-round two-prover commitment scheme can be broken by a non-signaling attack. Our negative result is as bad as it can get: for any candidate scheme that is (almost) perfectly hiding, there exists a strategy that allows the dishonest provers to open a commitment to an arbitrary bit (almost) as successfully as the honest provers can open an honestly prepared commitment, i.e., with probability (almost) 1 in case of a perfectly sound scheme. In the case of multi-round schemes, our impossibility result is restricted to perfectly hiding schemes. On the positive side, we show that the impossibility result can be circumvented by considering three provers instead: there exists a three-prover commitment scheme that is secure against arbitrary non-signaling attacks

    Spin-one ferromagnets with single-ion anisotropy in a perpendicular external field

    Full text link
    In this paper, the conventional Holstein-Primakoff method is generalized with the help of the characteristic angle transformation [Lei Zhou and Ruibao Tao, J. Phys. A {\bf 27} 5599 (1994)] for the spin-one magnetic systems with single-ion anisotropies. We find that the weakness of the conventional method for such systems can be overcome by the new approach. Two models will be discussed to illuminate the main idea, which are the ``easy-plane" and the ``easy-axis" spin-one ferromagnet, respectively. Comparisons show that the current approach can give reasonable ground state properties for the magnetic system with ``easy-plane" anisotropy though the conventional method never can, and can give a better representation than the conventional one for the magnetic system with ``easy-axis" anisotropy though the latter is usually believed to be a good approximation in such case. Study of the easy-plane model shows that there is a phase transition induced by the external field, and the low-temperature specific heat may have a peak as the field reaches the critical value.Comment: Using LaTex. To be published in the September 1 issue of Physical Review B (1996). Email address: [email protected]
    • …
    corecore