28,125 research outputs found

    Self-Diffusion in 2D Dusty Plasma Liquids: Numerical Simulation Results

    Full text link
    We perform Brownian dynamics simulations for studying the self-diffusion in two-dimensional (2D) dusty plasma liquids, in terms of both mean-square displacement and velocity autocorrelation function (VAF). Super-diffusion of charged dust particles has been observed to be most significant at infinitely small damping rate γ\gamma for intermediate coupling strength, where the long-time asymptotic behavior of VAF is found to be the product of t1t^{-1} and exp(γt)\exp{(-\gamma t)}. The former represents the prediction of early theories in 2D simple liquids and the latter the VAF of a free Brownian particle. This leads to a smooth transition from super-diffusion to normal diffusion, and then to sub-diffusion with an increase of the damping rate. These results well explain the seemingly contradictory scattered in recent classical molecular dynamics simulations and experiments of dusty plasmas.Comment: 10 pages 5 figures, accepted by PR

    Eigenvalues of Ruijsenaars-Schneider models associated with An1A_{n-1} root system in Bethe ansatz formalism

    Get PDF
    Ruijsenaars-Schneider models associated with An1A_{n-1} root system with a discrete coupling constant are studied. The eigenvalues of the Hamiltonian are givein in terms of the Bethe ansatz formulas. Taking the "non-relativistic" limit, we obtain the spectrum of the corresponding Calogero-Moser systems in the third formulas of Felder et al [20].Comment: Latex file, 25 page

    Swift, XMM-Newton, and NuSTAR observations of PSR J2032+4127/MT91 213

    Get PDF
    We report our recent Swift, NuSTAR, and XMM-Newton X-ray and Lijiang optical observations on PSR J2032+4127/MT91 213, the gamma-ray binary candidate with a period of 45-50 years. The coming periastron of the system was predicted to be in November 2017, around which high-energy flares from keV to TeV are expected. Recent studies with Chandra and Swift X-ray observations taken in 2015/16 showed that its X-ray emission has been brighter by a factors of ~10 than that before 2013, probably revealing some on-going activities between the pulsar wind and the stellar wind. Our new Swift/XRT lightcurve shows no strong evidence of a single vigorous brightening trend, but rather several strong X-ray flares on weekly to monthly timescales with a slowly brightening baseline, namely the low state. The NuSTAR and XMM-Newton observations taken during the flaring and the low states, respectively, show a denser environment and a softer power-law index during the flaring state, implying that the pulsar wind interacted with stronger stellar winds of the companion to produce the flares. These precursors would be crucial in studying the predicted giant outburst from this extreme gamma-ray binary during the periastron passage in late 2017.Comment: 6 pages, including 3 figures and 2 tables. Accepted for publication in Ap

    Masses and Majorana fermions in graphene

    Full text link
    We review the classification of all the 36 possible gap-opening instabilities in graphene, i.e., the 36 relativistic masses of the two-dimensional Dirac Hamiltonian when the spin, valley, and superconducting channels are included. We then show that in graphene it is possible to realize an odd number of Majorana fermions attached to vortices in superconducting order parameters if a proper hierarchy of mass scales is in place.Comment: Contribution to the Proceedings of the Nobel symposium on graphene and quantum matte

    Wave spectra of 2D dusty plasma solids and liquids

    Full text link
    Brownian dynamics simulations were carried out to study wave spectra of two-dimensional dusty plasma liquids and solids for a wide range of wavelengths. The existence of a longitudinal dust thermal mode was confirmed in simulations, and a cutoff wavenumber in the transverse mode was measured. Dispersion relations, resulting from simulations, were compared with those from analytical theories, such as the random-phase approximation (RPA), quasi-localized charged approximation (QLCA), and harmonic approximation (HA). An overall good agreement between the QLCA and simulations was found for wide ranges of states and wavelengths after taking into account the direct thermal effect in the QLCA, while for the RPA and HA good agreement with simulations were found in the high and low temperature limits, respectively.Comment: 26 pages, 9 figure

    Gauge Field Fluctuations and First-Order Phase Transition in Color Superconductivity

    Full text link
    We study the gauge field fluctuations in dense quark matter and determine the temperature of the induced first-order phase transition to the color-superconducting phase in weak coupling. We find that the local approximation of the coupling between the gauge potential and the order parameter, employed in the Ginzburg-Landau theory, has to be modified by restoring the full momentum dependence of the polarization function of gluons in the superconducting phase.Comment: 5 pages, 1 figure, Revtex, we have modified our conclusions for the metallic superconducto

    Constructing power system restoration strategies

    Get PDF
    System restoration is an integral part of the overall defense system against catastrophic outages. The nature of system restoration problem involves status assessment, optimization of generation capability and load pickup. The optimization problem needs to take into numerous practical considerations and, therefore, it cannot be formulated as one single optimization problem. The other critical consideration for the development of decision support tools is its generality, i.e., the tools should be portable from a system to another with minimal customization. This presentation will provide a comprehensive methodology for construction of system restoration strategies. The strategy adopted by each power system differs, depending on the system characteristics and policies. A new method based on the concept of "generic restoration milestones" and "generic restoration actions" has been developed. A specific restoration strategy can be synthesized by a combination of the milestones and actions based on the actual system conditions. The decision support tool is expected to reduce the restoration time, thereby improving the system reliability.published_or_final_versionThe 6th International Conference on Electrical and Electroincs Engineering (ELECO 2009), Bursa, Turkey, 5-8 November 2009. In Proceedings of the International Conference on Electrical and Electronics Engineering, 2009, p. I8-I1

    Ettingshausen effect due to Majorana modes

    Get PDF
    The presence of Majorana zero-energy modes at vortex cores in a topological superconductor implies that each vortex carries an extra entropy s0s_0, given by (kB/2)ln2(k_{B}/2)\ln 2, that is independent of temperature. By utilizing this special property of Majorana modes, the edges of a topological superconductor can be cooled (or heated) by the motion of the vortices across the edges. As vortices flow in the transverse direction with respect to an external imposed supercurrent, due to the Lorentz force, a thermoelectric effect analogous to the Ettingshausen effect is expected to occur between opposing edges. We propose an experiment to observe this thermoelectric effect, which could directly probe the intrinsic entropy of Majorana zero-energy modes.Comment: 16 pages, 3 figure
    corecore