179,756 research outputs found

    On the critical dissipative quasi-geostrophic equation

    Full text link
    The 2D quasi-geostrophic (QG) equation is a two dimensional model of the 3D incompressible Euler equations. When dissipation is included in the model then solutions always exist if the dissipation's wave number dependence is super-linear. Below this critical power the dissipation appears to be insufficient. For instance, it is not known if the critical dissipative QG equation has global smooth solutions for arbitrary large initial data. In this paper we prove existence and uniqueness of global classical solutions of the critical dissipative QG equation for initial data that have small L∞L^\infty norm. The importance of an L∞L^{\infty} smallness condition is due to the fact that L∞L^{\infty} is a conserved norm for the non-dissipative QG equation and is non-increasing on all solutions of the dissipative QG., irrespective of size.Comment: 12 page

    Precise near-earth navigation with GPS: A survey of techniques

    Get PDF
    The tracking accuracy of the low earth orbiters (below about 3000 km altitude) can be brought below 10 cm with a variety of differential techniques that exploit the Global Positioning System (GPS). All of these techniques require a precisely known global network of GPS ground receivers and a receiver aboard the user satellite, and all simultaneously estimate the user and GPS satellite orbits. Three basic approaches are the geometric, dynamic, and nondynamic strategies. The last combines dynamic GPS solutions with a geometric user solution. Two powerful extensions of the nondynamic strategy show considerable promise. The first uses an optimized synthesis of dynamics and geometry in the user solution, while the second uses a novel gravity-adjustment method to exploit data from repeat ground tracks. These techniques will offer sub-decimeter accuracy for dynamically unpredictable satellites down to the lowesst possible altitudes

    The thermal influence of continents on a model-generated January climate

    Get PDF
    Two climate simulations were compared. Both climate computations were initialized with the same horizontally uniform state of rest. However, one is carried out on a water planet (without continents), while the second is repeated on a planet with geographically realistic but flat (sea level) continents. The continents in this experiment have a uniform albedo of 0.14, except where snow accumulates, a uniform roughness height of 0.3 m, and zero water storage capacity. Both runs were carried out for a 'perpetual January' with solar declination fixed at January 15

    Summary of results of January climate simulations with the GISS coarse-mesh model

    Get PDF
    The large scale climates generated by extended runs of the model are relatively independent of the initial atmospheric conditions, if the first few months of each simulation are discarded. The perpetual January simulations with a specified SST field produced excessive snow accumulation over the continents of the Northern Hemisphere. Mass exchanges between the cold (warm) continents and the warm (cold) adjacent oceans produced significant surface pressure changes over the oceans as well as over the land. The effect of terrain and terrain elevation on the amount of precipitation was examined. The evaporation of continental moisture was calculated to cause large increases in precipitation over the continents

    Local dynamics in high-order harmonic generation using Bohmian trajectories

    Full text link
    We investigate high-order harmonic generation from a Bohmian-mechanical perspective, and find that the innermost part of the core, represented by a single Bohmian trajectory, leads to the main contributions to the high-harmonic spectra. Using time-frequency analysis, we associate this central Bohmian trajectory to an ensemble of unbound classical trajectories leaving and returning to the core, in agreement with the three step model. In the Bohmian scenario, this physical picture builds up non-locally near the core via the quantum mechanical phase of the wavefunction. This implies that the flow of the wavefunction far from the core alters the central Bohmian trajectory. We also show how this phase degrades in time for the peripheral Bohmian trajectories as they leave the core region.Comment: 7 pages, 3 figures; the manuscript has been considerably extended and modified with regard to the previous version
    • …
    corecore