79,123 research outputs found
Novel Techniques and Their Applications to Health Foods, Agricultural and Medical Biotechnology: Functional Genomics and Basic Epigenetic Controls in Plant and Animal Cells
Selected applications of novel techniques for analyzing Health Food formulations, as well as for advanced investigations in Agricultural and Medical Biotechnology aimed at defining the multiple connections between functional genomics and epigenomic, fundamental control mechanisms in both animal and plant cells are being reviewed with the aim of unraveling future developments and policy changes that are likely to open new niches for Biotechnology and prevent the shrinking or closing of existing markets. Amongst the selected novel techniques with applications in both Agricultural and Medical Biotechnology are: immobilized bacterial cells and enzymes, microencapsulation and liposome production, genetic manipulation of microorganisms, development of novel vaccines from plants, epigenomics of mammalian cells and organisms, and biocomputational tools for molecular modeling related to disease and Bioinformatics. Both
fundamental and applied aspects of the emerging new techniques are being discussed in relation to
their anticipated, marked impact on future markets and present policy changes that are needed for success in either Agricultural or Medical Biotechnology. The novel techniques are illustrated with figures presenting the most important features of representative and powerful tools which are currently being developed for both immediate and long term applications in Agriculture, Health Food formulation and production, pharmaceuticals and
Medicine. The research aspects are naturally emphasized in our review as they are key to further developments in Biotechnology; however, the course adopted for the implementation of biotechnological applications, and the policies associated with biotechnological applications are clearly the determining factors for future Biotechnology successes, be they pharmaceutical, medical or agricultural
A Thermal-Nonthermal Inverse Compton Model for Cyg X-1
Using Monte Carlo methods to simulate the inverse Compton scattering of soft
photons, we model the spectrum of the Galactic black hole candidate Cyg X-1,
which shows evidence of a nonthermal tail extending beyond a few hundred keV.
We assume an ad hoc sphere of leptons, whose energy distribution consists of a
Maxwellian plus a high energy power-law tail, and inject 0.5 keV blackbody
photons. The spectral data is used to constrain the nonthermal plasma fraction
and the power-law index assuming a reasonable Maxwellian temperature and
Thomson depth. A small but non-negligible fraction of nonthermal leptons is
needed to explain the power-law tail.Comment: 5 pages, 2 PostScript figure, uses aipproc.sty, to appear in
Proceedings of Fourth Compton Symposiu
Measuring spectrum of spin wave using vortex dynamics
We propose to measure the spectrum of magnetic excitation in magnetic
materials using motion of vortex lattice driven by both ac and dc current in
superconductors. When the motion of vortex lattice is resonant with oscillation
of magnetic moments, the voltage decreases at a given current. From transport
measurement, one can obtain frequency of the magnetic excitation with the wave
number determined by vortex lattice constant. By changing the lattice constant
through applied magnetic fields, one can obtains the spectrum of the magnetic
excitation up to a wave vector of order .Comment: 4 pages, 2 figure
Liquid crystal phases of ultracold dipolar fermions on a lattice
Motivated by the search for quantum liquid crystal phases in a gas of
ultracold atoms and molecules, we study the density wave and nematic
instabilities of dipolar fermions on the two-dimensional square lattice (in the
plane) with dipoles pointing to the direction. We determine the phase
diagram using two complimentary methods, the Hatree-Fock mean field theory and
the linear response analysis of compressibility. Both give consistent results.
In addition to the staggered (, ) density wave, over a finite range
of densities and hopping parameters, the ground state of the system first
becomes nematic and then smectic, when the dipolar interaction strength is
increased. Both phases are characterized by the same broken four-fold (C)
rotational symmetry. The difference is that the nematic phase has a closed
Fermi surface but the smectic does not. The transition from the nematic to the
smectic phase is associated with a jump in the nematic order parameter. This
jump is closely related to the van Hove singularities. We derive the kinetic
equation for collective excitations in the normal isotropic phase and find that
the zero sound mode is strongly Landau damped and thus is not a well defined
excitation. Experimental implications of our results are discussed.Comment: 8 pages, 4 figures; Erratum added in the appendi
Fast Arc-Annotated Subsequence Matching in Linear Space
An arc-annotated string is a string of characters, called bases, augmented
with a set of pairs, called arcs, each connecting two bases. Given
arc-annotated strings and the arc-preserving subsequence problem is to
determine if can be obtained from by deleting bases from . Whenever
a base is deleted any arc with an endpoint in that base is also deleted.
Arc-annotated strings where the arcs are ``nested'' are a natural model of RNA
molecules that captures both the primary and secondary structure of these. The
arc-preserving subsequence problem for nested arc-annotated strings is basic
primitive for investigating the function of RNA molecules. Gramm et al. [ACM
Trans. Algorithms 2006] gave an algorithm for this problem using time
and space, where and are the lengths of and , respectively. In
this paper we present a new algorithm using time and space,
thereby matching the previous time bound while significantly reducing the space
from a quadratic term to linear. This is essential to process large RNA
molecules where the space is likely to be a bottleneck. To obtain our result we
introduce several novel ideas which may be of independent interest for related
problems on arc-annotated strings.Comment: To appear in Algoritmic
Exploring the Referral and Usage of Science Fiction in HCI Literature
Research on science fiction (sci-fi) in scientific publications has indicated
the usage of sci-fi stories, movies or shows to inspire novel Human-Computer
Interaction (HCI) research. Yet no studies have analysed sci-fi in a top-ranked
computer science conference at present. For that reason, we examine the CHI
main track for the presence and nature of sci-fi referrals in relationship to
HCI research. We search for six sci-fi terms in a dataset of 5812 CHI main
proceedings and code the context of 175 sci-fi referrals in 83 papers indexed
in the CHI main track. In our results, we categorize these papers into five
contemporary HCI research themes wherein sci-fi and HCI interconnect: 1)
Theoretical Design Research; 2) New Interactions; 3) Human-Body Modification or
Extension; 4) Human-Robot Interaction and Artificial Intelligence; and 5)
Visions of Computing and HCI. In conclusion, we discuss results and
implications located in the promising arena of sci-fi and HCI research.Comment: v1: 20 pages, 4 figures, 3 tables, HCI International 2018 accepted
submission v2: 20 pages, 4 figures, 3 tables, added link/doi for Springer
proceedin
The influence of baryons on the mass distribution of dark matter halos
Using a set of high-resolution N-body/SPH cosmological simulations with
identical initial conditions but run with different numerical setups, we
investigate the influence of baryonic matter on the mass distribution of dark
halos when radiative cooling is NOT included. We compare the concentration
parameters of about 400 massive halos with virial mass from \Msun to
\Msun. We find that the concentration parameters for the
total mass and dark matter distributions in non radiative simulations are on
average larger by ~3% and 10% than those in a pure dark matter simulation. Our
results indicate that the total mass density profile is little affected by a
hot gas component in the simulations. After carefully excluding the effects of
resolutions and spurious two-body heating between dark matter and gas
particles, we conclude that the increase of the dark matter concentration
parameters is due to interactions between baryons and dark matter. We
demonstrate this with the aid of idealized simulations of two-body mergers. The
results of individual halos simulated with different mass resolutions show that
the gas profiles of densities, temperature and entropy are subjects of mass
resolution of SPH particles. In particular, we find that in the inner parts of
halos, as the SPH resolution increases the gas density becomes higher but both
the entropy and temperature decrease.Comment: 8 pages, 6 figures, 1 table, ApJ in press (v652n1); updated to match
with the being published versio
Driven classical diffusion with strong correlated disorder
We analyze one-dimensional motion of an overdamped classical particle in the
presence of external disorder potential and an arbitrary driving force F. In
thermodynamical limit the effective force-dependent mobility mu(F) is
self-averaging, although the required system size may be exponentially large
for strong disorder. We calculate the mobility mu(F) exactly, generalizing the
known results in linear response (weak driving force) and the perturbation
theory in powers of the disorder amplitude. For a strong disorder potential
with power-law correlations we identify a non-linear regime with a prominent
power-law dependence of the logarithm of mu(F) on the driving force.Comment: 4 pages, 2 figures include
- …
