20 research outputs found

    Characterization of the Insulin-Like Growth Factor Axis in the Human Thymus

    Full text link
    The components of the insulin-like growth factor (IGF) axis have been investigated in the normal human thymus. Using ribonuclease protection assays (RPA), IGF-II transcripts were detected in the normal human thymus. By reverse transcriptase polymerase chain reaction (RT-PCR) analyses, promoters P3 and P4 were found to be active in the transcription of IGF2 gene within human thymic epithelial cells (TEC). No IGF-II mRNA could be detected in human lymphoid Jurkat T cells with 30 cycles of RT-PCR. By Northern blot analyses, IGFBP-2 to -6 (but not IGFBP-1) were found to be expressed in TEC with a predominance of IGFBP-4. Interestingly, Jurkat T cells only express IGFBP-2 but at high levels. The type 1 IGF receptor was detected in Jurkat T cells but not in human TEC. The identification of the components of the IGF axis within separate compartments of the human thymus adds further evidence for a role of this axis in the control of T-cell development. The precise influence of thymic IGF axis upon T-cell differentiation and immunological self-tolerance however needs to be further investigated

    Molecular nature of genetic changes resulting in loss of heterozygosity of chromosome 11 in Wilms' tumours

    No full text
    In this paper we describe the analysis of genetic changes in chromosome 11 in Wilms' tumours. Using a range of probes for regions 11p15, 11p13 and 11q we have screened DNA from 14 Wilms' tumours together with control DNA obtained from the patients' lymphocytes and their parents. We have been able to demonstrate loss of heterozygosity in 5 of the 14 different Wilms' tumours. In three of these five tumours, loss of heterozygosity did not involve markers for 11p13, 11p15.4 or the proximal region of 11p15.5, but only some markers assigned to the most distal part of 11p15.5. In two of these tumours we could demonstrate unequal mitotic recombination in 11p with breakpoints in the hypervariable regions 5' of the insulin gene and/or 3' of the HRASI proto-oncogene. In one tumour, from a Beckwith-Wiedemann patient, all markers for the region 11q13-pter became hemizygous; the region 11q13-qter remained heterozygous. These results demonstrate that loss of heterozygosity in Wilms' tumours may not necessarily involve the proposed Wilms' tumours locus at 11p13 but may be limited to 11p15.5. This suggests that not only the 11p13 region, but also the 11p15.5 region is involved in Wilms' tumour development. The possible role of both regions in the development of Wilms' tumour is discusse

    The human insulin-like growth factor II gene contains two development-specific promoters

    Get PDF
    The insulin-like growth factors (IGF) play an important role in fetal and postnatal development. Recently, the nucleotide sequences of the cDNAs encoding IGF-I and IGF-II and part of the human IGF genes were reported. In this communication we describe two distinct IGF-II cDNAs isolated from a human adult liver and a human hepatoma cDNA library, respectively. Using these two cDNAs, we have established that the human IGF-II gene contains at least 7 exons. Two different IGF-II promoters have been identified, 19 kilobases (kb) apart, which are active in a development-specific manner. The promoter, active in the adult stage, is located only 1.4 kb downstream from the insulin gene

    Susceptibility to insulin dependent diabetes mellitus maps to a 4.1 Kb segment of DNA spanning the insulin gene and associated VNTR

    No full text
    Recent studies have demonstrated that a locus at 11p15,5 confers susceptibility to insulin dependent diabetes mellitus (IDDM). This locus has been shown to lie within a 19 kb region. We present a detailed sequence comparison of the predominant haplotypes found in this region in a population of French Caucasian IDDM patients and controls. Identification of polymorphisms both associated and unassociated with IDDM has allowed us to define further the region of association to 4.1 kb. Ten polymorphisms within this region are in strong linkage disequilibrium with each other and extend across the insulin gene locus and the variable number tandem repeat (VNTR) situated immediately 5' to the insulin gene. These represent a set of candidate disease polymorphisms one or more of which may account for the susceptibility to IDDM

    Expression of insulin-like growth factor-I and -II genes in rat medullary thyroid carcinoma

    Get PDF
    Several types of cancer cells produce polypeptide growth factors and often the same cells have functional receptors for the released growth factor (autocrine secretion). We have studied expression of genes encoding somatomedin-C/insulin-like growth factor-I (Sm-C/IGF-I) and IGF-II, in rat medullary thyroid carcinomas (MTCs) in different stages of tumour differentiation. RNAs hybridizing specifically to an IGF-I cDNA probe were detected in 6 out of 7 differentiated MTCs and IGF-II related RNAs were demonstrated in 5 out of these 7 differentiated MTCs. In 5 anaplastic MTCs no IGF RNAs were detected, except for a small amount of IGF-II related RNA in one tumour
    corecore