7 research outputs found

    Divergence between the high rate of p53 mutations in skin carcinomas and the low prevalence of anti-p53 antibodies

    Get PDF
    Circulating anti-p53 antibodies have been described and used as tumoural markers in patients with various cancers and strongly correlate with the p53 mutated status of the tumours. No study has yet looked at the prevalence of such antibodies in skin carcinoma patients although these tumours have been shown to be frequently p53 mutated. Most skin carcinoma can be diagnosed by examination or biopsy, but aggressive, recurrent and/or non-surgical cases' follow up would be helped by a biological marker of residual disease. We performed a prospective study looking at the prevalence of anti-p53 antibodies using an ELISA technique in a series of 105 skin carcinoma patients in comparison with a sex- and age-matched control skin carcinoma-free group (n = 130). Additionally, p53 accumulation was studied by immunohistochemistry to confirm p53 protein altered expression in a sample of tumours. Anti-p53 antibodies were detected in 2.9% of the cases, with a higher prevalence in patients suffering from the more aggressive squamous cell type (SCC) of skin carcinoma (8%) than for the more common and slowly growing basal cell carcinoma type or BCC (1.5%). p53 protein stabilization could be confirmed in 80% of tumours studied by IHC. This low level of anti-p53 antibody detection contrasts with the high rate of p53 mutations reported in these tumours. This observation shows that the anti-p53 humoral response is a complex and tissue-specific mechanism. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Regulatory T cell frequency in patients with melanoma with different disease stage and course, and modulating effects of high-dose interferon-α 2b treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-dose interferon-alpha 2b (IFN-α 2b) is the only approved systemic therapy in the United States for the adjuvant treatment of melanoma. The study objective was to explore the immunomodulatory mechanism of action for IFN-α 2b by measuring serum regulatory T cell (Treg), serum transforming growth factor-β (TGF-β), interleukin (IL)-10, and autoantibody levels in patients with melanoma treated with the induction phase of the high-dose IFN-α 2b regimen.</p> <p>Methods</p> <p>Patients with melanoma received IFN-α 2b administered intravenously (20 MU/m<sup>2 </sup>each day from day 1 to day 5 for 4 consecutive weeks). Serum Treg levels were measured as whole lymphocytes in CD4<sup>+ </sup>cells using flow cytometry while TGF-β, IL-10, and autoantibody levels were measured using enzyme-linked immunosorbent assays.</p> <p>Results</p> <p>Twenty-two patients with melanoma received IFN-α 2b treatment and were evaluated for Treg levels. Before treatment, Treg levels were significantly higher in patients with melanoma when compared with data from 20 healthy subjects (<it>P </it>= 0.001; Mann-Whitney test). Although a trend for reduction of Treg levels following IFN-α 2b treatment was observed (average decrease 0.29% per week), statistical significance was not achieved. Subgroup analyses indicated higher baseline Treg levels for stage III versus IV disease (<it>P </it>= 0.082), early recurrence versus no recurrence (<it>P </it>= 0.017), deceased versus surviving patients (<it>P = </it>0.021), and preoperative neoadjuvant versus postoperative adjuvant treatment groups (not significant). No significant effects were observed on the levels of TGF-β, IL-10, and autoantibodies in patients with melanoma treated with IFN-α 2b.</p> <p>Conclusions</p> <p>Patients with melanoma in this study showed increased basal levels of Treg that may be relevant to their disease and its progression. Treg levels shifted in patients with melanoma treated with IFN-α 2b, although no firm conclusions regarding the role of Tregs as a marker of treatment response or outcome can be made at present.</p

    The Forest behind the Tree: Phylogenetic Exploration of a Dominant Mycobacterium tuberculosis Strain Lineage from a High Tuberculosis Burden Country

    Get PDF
    BACKGROUND: Genotyping of Mycobacterium tuberculosis isolates is a powerful tool for epidemiological control of tuberculosis (TB) and phylogenetic exploration of the pathogen. Standardized PCR-based typing, based on 15 to 24 mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) loci combined with spoligotyping, has been shown to have adequate resolution power for tracing TB transmission and to be useful for predicting diverse strain lineages in European settings. Its informative value needs to be tested in high TB-burden countries, where the use of genotyping is often complicated by dominance of geographically specific, genetically homogeneous strain lineages. METHODOLOGY/PRINCIPAL FINDINGS: We tested this genotyping system for molecular epidemiological analysis of 369 M. tuberculosis isolates from 3 regions of Brazil, a high TB-burden country. Deligotyping, targeting 43 large sequence polymorphisms (LSPs), and the MIRU-VNTRplus identification database were used to assess phylogenetic predictions. High congruence between the different typing results consistently revealed the countrywide supremacy of the Latin-American-Mediterranean (LAM) lineage, comprised of three main branches. In addition to an already known RDRio branch, at least one other branch characterized by a phylogenetically informative LAM3 spoligo-signature seems to be globally distributed beyond Brazil. Nevertheless, by distinguishing 321 genotypes in this strain population, combined MIRU-VNTR typing and spoligotyping demonstrated the presence of multiple distinct clones. The use of 15 to 24 loci discriminated 21 to 25% more strains within the LAM lineage, compared to a restricted lineage-specific locus set suggested to be used after SNP analysis. Noteworthy, 23 of the 28 molecular clusters identified were exclusively composed of patient isolates from a same region, consistent with expected patterns of mostly local TB transmission. CONCLUSIONS/SIGNIFICANCE: Standard MIRU-VNTR typing combined with spoligotyping can reveal epidemiologically meaningful clonal diversity behind a dominant M. tuberculosis strain lineage in a high TB-burden country and is useful to explore international phylogenetical ramifications
    corecore