24 research outputs found
Recommended from our members
Intra- and interchain interactions in (Cu1/2¬Au1/2)CN, (Ag1/2¬Au1/2)CN, and (Cu1/3Ag1/3Au1/3)CN and their effect on one-, two- and three-dimensional order
Mixed-metal cyanides, (Cu1/2Au1/2)CN, (Ag1/2Au1/2)CN and (Cu1/3Ag1/3Au1/3)CN, adopt an AuCN-type structure in which metal-cyanide chains pack on a hexagonal lattice with metal atoms arranged in sheets. The interactions between and within the metal-cyanide chains are investigated using density-functional-theory (DFT) calculations, 13C solid-state NMR (SSNMR) and X-ray pair distribution function (PDF) measurements. Long-range metal and cyanide order is found within the chains: (–Cu–NC–Au–CN–)∞, (–Ag–NC–Au–CN–)∞ and (–Cu–NC–Ag–NC–Au–CN–)∞. Although Bragg diffraction studies establish that there is no long-range order between chains, X-ray PDF results show that there is local order between chains. In (Cu1/2Au1/2)CN and (Ag1/2Au1/2)CN, there is a preference for unlike metal atoms occurring as nearest neighbours within the metal sheets. A general mathematical proof shows that the maximum average number of heterometallic nearest-neighbour interactions on a hexagonal lattice with two types of metal atom is four. Calculated energies of periodic structural models show that those with four unlike nearest neighbours are most favourable. Of these, models in space group Immm give the best fits to the X-ray PDF data out to 8 Å, providing good descriptions of the short- and medium-range structures. This result shows that interactions beyond those of nearest neighbours must be considered when determining the structures of these materials. Such interactions are also important in (Cu1/3Ag1/3Au1/3)CN, leading to the adoption of a structure in Pmm2 containing mixed Cu-Au and silver-only sheets arranged to maximise the numbers of CuˑˑˑAu nearest- and next-nearest-neighbour interactions
Reactivity of He with ionic compounds under high pressure
Helium was long thought to be unable to form stable solid compounds, until a recent discovery that helium reacts with sodium at high pressure. Here, the authors demonstrate the driving force for helium reactivity, showing that it can form new compounds under pressure without forming any local chemical bonds
Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound
Modern ab initio calculations predict ionic and superionic states in highly compressed water and ammonia. The prediction apparently contradicts state-of-the-art experimentally established phase diagrams overwhelmingly dominated by molecular phases. Here we present experimental evidence that the threshold pressure of similar to 120 GPa induces in molecular ammonia the process of autoionization to yet experimentally unknown ionic compound-ammonium amide. Our supplementary theoretical simulations provide valuable insight into the mechanism of autoionization showing no hydrogen bond symmetrization along the transformation path, a remarkably small energy barrier between competing phases and the impact of structural rearrangement contribution on the overall conversion rate. This discovery is bridging theory and experiment thus opening new possibilities for studying molecular interactions in hydrogen-bonded systems. Experimental knowledge on this novel ionic phase of ammonia also provides strong motivation for reconsideration of the theory of molecular ice layers formation and dynamics in giant gas planets