17,787 research outputs found

    "Ultimate state" of two-dimensional Rayleigh-Benard convection between free-slip fixed temperature boundaries

    Full text link
    Rigorous upper limits on the vertical heat transport in two dimensional Rayleigh-Benard convection between stress-free isothermal boundaries are derived from the Boussinesq approximation of the Navier-Stokes equations. The Nusselt number Nu is bounded in terms of the Rayleigh number Ra according to Nu0.2295Ra5/12Nu \leq 0.2295 Ra^{5/12} uniformly in the Prandtl number Pr. This Nusselt number scaling challenges some theoretical arguments regarding the asymptotic high Rayleigh number heat transport by turbulent convection.Comment: 4 page

    Internal heating driven convection at infinite Prandtl number

    Full text link
    We derive an improved rigorous bound on the space and time averaged temperature of an infinite Prandtl number Boussinesq fluid contained between isothermal no-slip boundaries thermally driven by uniform internal heating. A novel approach is used wherein a singular stable stratification is introduced as a perturbation to a non-singular background profile, yielding the estimate 0.419[Rlog(R)]1/4\geq 0.419[R\log(R)]^{-1/4} where RR is the heat Rayleigh number. The analysis relies on a generalized Hardy-Rellich inequality that is proved in the appendix

    The Skylab concentrated atmospheric radiation project

    Get PDF
    The author has identified the following significant results. Comparison of several existing infrared radiative transfer models under somewhat controlled conditions and with atmospheric observations of Skylab's S191 and S192 radiometers illustrated that the models tend to over-compute atmospheric attenuation in the window region of the atmospheric infrared spectra

    Stability of Vortex Solutions to an Extended Navier-Stokes System

    Full text link
    We study the long-time behavior an extended Navier-Stokes system in R2\R^2 where the incompressibility constraint is relaxed. This is one of several "reduced models" of Grubb and Solonnikov '89 and was revisited recently (Liu, Liu, Pego '07) in bounded domains in order to explain the fast convergence of certain numerical schemes (Johnston, Liu '04). Our first result shows that if the initial divergence of the fluid velocity is mean zero, then the Oseen vortex is globally asymptotically stable. This is the same as the Gallay Wayne '05 result for the standard Navier-Stokes equations. When the initial divergence is not mean zero, we show that the analogue of the Oseen vortex exists and is stable under small perturbations. For completeness, we also prove global well-posedness of the system we study.Comment: 24 pages, 1 figure, updated to add authors' contact information and to address referee's comment

    Computation of a Theoretical Membrane Phase Diagram, and the Role of Phase in Lipid Raft-Mediated Protein Organization

    Full text link
    Lipid phase heterogeneity in the plasma membrane is thought to be crucial for many aspects of cell signaling, but the physical basis of participating membrane domains such as "lipid rafts" remains controversial. Here we consider a lattice model yielding a phase diagram that includes several states proposed to be relevant for the cell membrane, including microemulsion - which can be related to membrane curvature - and Ising critical behavior. Using a neural network-based machine learning approach, we compute the full phase diagram of this lattice model. We analyze selected regions of this phase diagram in the context of a signaling initiation event in mast cells: recruitment of the membrane-anchored tyrosine kinase Lyn to a cluster of transmembrane of IgE-Fc{\epsilon}RI receptors. We find that model membrane systems in microemulsion and Ising critical states can mediate roughly equal levels of kinase recruitment (binding energy ~ -0.6 kBT), whereas a membrane near a tricritical point can mediate much stronger kinase recruitment (-1.7 kBT). By comparing several models for lipid heterogeneity within a single theoretical framework, this work points to testable differences between existing models. We also suggest the tricritical point as a new possibility for the basis of membrane domains that facilitate preferential partitioning of signaling components.Comment: 33 pages, 7 figures, 16 supplementary pages, 10 supplementary figure

    Buoyancy driven rotating boundary currents

    Get PDF
    The structure of boundary currents formed from intermediately dense water introduced into a rotating, stably stratified, two-layer environment is investigated in a series of laboratory experiments, performed for Froude numbers ranging from 0.01 to 1. The thickness and streamwise velocity profiles in quasi-steady currents are measured using a pH activated tracer (thymol blue) and found to compare favorably to simplified analytic solutions and numerical models. Currents flowing along sloping boundaries in a stratified background exhibit robust stability at all experimental Froude numbers. Such stability is in sharp contrast to the unequivocal instability of such currents flowing against vertical boundaries, or of currents flowing along slopes in a uniform background. The presence of a variety of wave mechanisms in the ambient medium might account for the slower and wider observed structures and the stability of the currents, by effecting the damping of disturbances through wave radiation.Comment: 9 pages with 2 figures to appear in Ann NYAS "Long range effects in physics and astrophysics
    corecore