470 research outputs found

    An Optical Approach to the Dynamical Casimir Effect

    Full text link
    We recently proposed a new approach to analyze the parametric resonance in a vibrating cavity based on the analysis of classical optical paths. This approach is used to examine various models of cavities with moving walls. We prove that our method is useful to extract easily basic physical outcome.Comment: 9 page

    Nambu-Goto string action with Gauss-Bonnet term

    Full text link
    We examine the relativistic Nambu-Goto model with Gauss-Bonnet boundary term added to the action integral. The system is analysed using an invariant representation of dynamical string degrees of freedom by complex Liouville fields. The solutions of classical equations of motion for open strings are described.Comment: 9 pages, late

    Meson bound states in multiflavour massive Schwinger model

    Get PDF
    The problem of meson bound states with NfN_f massive fermions in two dimensional quantum electrodynamics is discussed. We speculate about the spectrum of the lightest particles by means of the effective semiclassical description. In particular, the systems of fundamental fermions with SU(2)SU(2) and SU(3)SU(3) flavour symmetries broken by massive terms are investigated.Comment: 16 page

    Exact closed form analytical solutions for vibrating cavities

    Full text link
    For one-dimensional vibrating cavity systems appearing in the standard illustration of the dynamical Casimir effect, we propose an approach to the construction of exact closed-form solutions. As new results, we obtain solutions that are given for arbitrary frequencies, amplitudes and time regions. In a broad range of parameters, a vibrating cavity model exhibits the general property of exponential instability. Marginal behavior of the system manifests in a power-like growth of radiated energy.Comment: 17 pages, 7 figure

    Open strings with topologically inspired boundary conditions

    Full text link
    We consider an open string described by an action of the Dirac-Nambu-Goto type with topological corrections which affect the boundary conditions but not the equations of motion. The most general addition of this kind is a sum of the Gauss-Bonnet action and the first Chern number (when the background spacetime dimension is four) of the normal bundle to the string worldsheet. We examine the modification introduced by such terms in the boundary conditions at the ends of the string.Comment: 12 pages, late

    Dynamical Casimir Effect for a Swinging Cavity

    Full text link
    The resonant scalar particle generation for a swinging cavity resonator in the Casimir vacuum is examined. It is shown that the number of particles grows exponentially when the cavity rotates at some specific external frequency.Comment: to appear in J. Phys. A: Math. Theo

    Numerical approach to the dynamical Casimir effect

    Full text link
    The dynamical Casimir effect for a massless scalar field in 1+1-dimensions is studied numerically by solving a system of coupled first-order differential equations. The number of scalar particles created from vacuum is given by the solutions to this system which can be found by means of standard numerics. The formalism already used in a former work is derived in detail and is applied to resonant as well as off-resonant cavity oscillations.Comment: 15 pages, 4 figures, accepted for publication in J. Phys. A (special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005

    Planetoid strings : solutions and perturbations

    Full text link
    A novel ansatz for solving the string equations of motion and constraints in generic curved backgrounds, namely the planetoid ansatz, was proposed recently by some authors. We construct several specific examples of planetoid strings in curved backgrounds which include Lorentzian wormholes, spherical Rindler spacetime and the 2+1 dimensional black hole. A semiclassical quantisation is performed and the Regge relations for the planetoids are obtained. The general equations for the study of small perturbations about these solutions are written down using the standard, manifestly covariant formalism. Applications to special cases such as those of planetoid strings in Minkowski and spherical Rindler spacetimes are also presented.Comment: 24 pages (including two figures), RevTex, expanded and figures adde

    Exact solution for the energy density inside a one-dimensional non-static cavity with an arbitrary initial field state

    Full text link
    We study the exact solution for the energy density of a real massless scalar field in a two-dimensional spacetime, inside a non-static cavity with an arbitrary initial field state, taking into account the Neumann and Dirichlet boundary conditions. This work generalizes the exact solution proposed by Cole and Schieve in the context of the Dirichlet boundary condition and vacuum as the initial state. We investigate diagonal states, examining the vacuum and thermal field as particular cases. We also study non-diagonal initial field states, taking as examples the coherent and Schrodinger cat states.Comment: 10 pages, 8 figure
    • …
    corecore