660 research outputs found
Negations in syllogistic reasoning: Evidence for a heuristic–analytic conflict
An experiment utilizing response time measures was conducted to test dominant processing strategies in syllogistic reasoning with the expanded quantifier set proposed by Roberts (2005). Through adding negations to existing quantifiers it is possible to change problem surface features without altering logical validity. Biases based on surface features such as atmosphere, matching, and the probability heuristics model (PHM; Chater & Oaksford, 1999; Wetherick & Gilhooly, 1995) would not be expected to show variance in response latencies, but participant responses should be highly sensitive to changes in the surface features of the quantifiers. In contrast, according to analytic accounts such as mental models theory and mental logic (e.g., Johnson-Laird & Byrne, 1991; Rips, 1994) participants should exhibit increased response times for negated premises, but not be overly impacted upon by the surface features of the conclusion. Data indicated that the dominant response strategy was based on a matching heuristic, but also provided evidence of a resource-demanding analytic procedure for dealing with double negatives. The authors propose that dual-process theories offer a stronger account of these data whereby participants employ competing heuristic and analytic strategies and fall back on a heuristic response when analytic processing fails
Group sequential designs for stepped-wedge cluster randomised trials.
BACKGROUND/AIMS: The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs. METHODS: Utilising the error spending approach to group sequential trial design, we detail the assumptions required for the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for efficacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge cluster randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is explored. RESULTS: We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively, with no cost to the trial's type-I and type-II error rates. The use of restricted error maximum likelihood estimation was found to be more important than quantile substitution for controlling the type-I error rate. CONCLUSION: The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against time-consuming trials conducted on poor performing treatments and also help expedite the implementation of efficacious treatments. In future, trialists should consider incorporating early stopping of some kind into stepped-wedge cluster randomised trials according to the needs of the particular trial
Recommended from our members
Group sequential crossover trial designs with strong control of the familywise error rate.
Crossover designs are an extremely useful tool to investigators, and group sequential methods have proven highly proficient at improving the efficiency of parallel group trials. Yet, group sequential methods and crossover designs have rarely been paired together. One possible explanation for this could be the absence of a formal proof of how to strongly control the familywise error rate in the case when multiple comparisons will be made. Here, we provide this proof, valid for any number of initial experimental treatments and any number of stages, when results are analyzed using a linear mixed model. We then establish formulae for the expected sample size and expected number of observations of such a trial, given any choice of stopping boundaries. Finally, utilizing the four-treatment, four-period TOMADO trial as an example, we demonstrate that group sequential methods in this setting could have reduced the trials expected number of observations under the global null hypothesis by over 33%
Recommended from our members
An optimised multi-arm multi-stage clinical trial design for unknown variance.
Multi-arm multi-stage trial designs can bring notable gains in efficiency to the drug development process. However, for normally distributed endpoints, the determination of a design typically depends on the assumption that the patient variance in response is known. In practice, this will not usually be the case. To allow for unknown variance, previous research explored the performance of t-test statistics, coupled with a quantile substitution procedure for modifying the stopping boundaries, at controlling the familywise error-rate to the nominal level. Here, we discuss an alternative method based on Monte Carlo simulation that allows the group size and stopping boundaries of a multi-arm multi-stage t-test to be optimised, according to some nominated optimality criteria. We consider several examples, provide R code for general implementation, and show that our designs confer a familywise error-rate and power close to the desired level. Consequently, this methodology will provide utility in future multi-arm multi-stage trials
Stepped wedge cluster randomized controlled trial designs: a review of reporting quality and design features
Abstract
Background
The stepped wedge (SW) cluster randomized controlled trial (CRCT) design is being used with increasing frequency. However, there is limited published research on the quality of reporting of SW-CRCTs. We address this issue by conducting a literature review.
Methods
Medline, Ovid, Web of Knowledge, the Cochrane Library, PsycINFO, the ISRCTN registry, and ClinicalTrials.gov were searched to identify investigations employing the SW-CRCT design up to February 2015. For each included completed study, information was extracted on a selection of criteria, based on the CONSORT extension to CRCTs, to assess the quality of reporting.
Results
A total of 123 studies were included in our review, of which 39 were completed trial reports. The standard of reporting of SW-CRCTs varied in quality. The percentage of trials reporting each criterion varied to as low as 15.4%, with a median of 66.7%.
Conclusions
There is much room for improvement in the quality of reporting of SW-CRCTs. This is consistent with recent findings for CRCTs. A CONSORT extension for SW-CRCTs is warranted to standardize the reporting of SW-CRCTs
To add or not to add a new treatment arm to a multiarm study: A decision-theoretic framework.
Multiarm clinical trials, which compare several experimental treatments against control, are frequently recommended due to their efficiency gain. In practise, all potential treatments may not be ready to be tested in a phase II/III trial at the same time. It has become appealing to allow new treatment arms to be added into on-going clinical trials using a "platform" trial approach. To the best of our knowledge, many aspects of when to add arms to an existing trial have not been explored in the literature. Most works on adding arm(s) assume that a new arm is opened whenever a new treatment becomes available. This strategy may prolong the overall duration of a study or cause reduction in marginal power for each hypothesis if the adaptation is not well accommodated. Within a two-stage trial setting, we propose a decision-theoretic framework to investigate when to add or not to add a new treatment arm based on the observed stage one treatment responses. To account for different prospect of multiarm studies, we define utility in two different ways; one for a trial that aims to maximise the number of rejected hypotheses; the other for a trial that would declare a success when at least one hypothesis is rejected from the study. Our framework shows that it is not always optimal to add a new treatment arm to an existing trial. We illustrate a case study by considering a completed trial on knee osteoarthritis
A Bayesian adaptive design for biomarker trials with linked treatments.
BACKGROUND: Response to treatments is highly heterogeneous in cancer. Increased availability of biomarkers and targeted treatments has led to the need for trial designs that efficiently test new treatments in biomarker-stratified patient subgroups. METHODS: We propose a novel Bayesian adaptive randomisation (BAR) design for use in multi-arm phase II trials where biomarkers exist that are potentially predictive of a linked treatment's effect. The design is motivated in part by two phase II trials that are currently in development. The design starts by randomising patients to the control treatment or to experimental treatments that the biomarker profile suggests should be active. At interim analyses, data from treated patients are used to update the allocation probabilities. If the linked treatments are effective, the allocation remains high; if ineffective, the allocation changes over the course of the trial to unlinked treatments that are more effective. RESULTS: Our proposed design has high power to detect treatment effects if the pairings of treatment with biomarker are correct, but also performs well when alternative pairings are true. The design is consistently more powerful than parallel-groups stratified trials. CONCLUSIONS: This BAR design is a powerful approach to use when there are pairings of biomarkers with treatments available for testing simultaneously.This work was supported by the Medical Research Council (grant number G0800860) and the NIHR Cambridge Biomedical Research Centre.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/bjc.2015.27
- …