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Group sequential crossover trial designs with strong
control of the familywise error rate

Michael J. Grayling, James M. S. Wason, and Adrian P. Mander

Hub for Trials Methodology Research, MRC Biostatistics Unit, Cambridge, UK

ABSTRACT
Crossover designs are an extremely useful tool to investigators, and
group sequential methods have proven highly proficient at improving
the efficiency of parallel group trials. Yet, group sequential methods
and crossover designs have rarely been paired together. One possible
explanation for this could be the absence of a formal proof of how to
strongly control the familywise error rate in the case when multiple
comparisons will be made. Here, we provide this proof, valid for any
number of initial experimental treatments and any number of stages,
when results are analyzed using a linear mixed model. We then estab-
lish formulae for the expected sample size and expected number of
observations of such a trial, given any choice of stopping boundaries.
Finally, utilizing the four-treatment, four-period TOMADO trial as an
example, we demonstrate that group sequential methods in this setting
could have reduced the trials expected number of observations under
the global null hypothesis by over 33%.
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1. Introduction

The efficiency of crossover trials often makes them the best design for a clinical trial.
Administering multiple treatments to patients reduces the standard error of the
estimated treatment effects compared to a parallel trial design with an equal number of
patients. Therefore, though restrictions to their use exist, such as a requirement for
patients to begin each new treatment period in a state comparable to those completed,
crossover trials are the design of choice in many settings (Jones and Kenward, 2014;
Senn, 2002), resulting in them accounting for 22% of all published trials in December
2000, for example (Mills et al., 2009).
In a parallel design setting, group sequential methods are frequently utilized to

improve a clinical trial’s efficiency (Jennison and Turnbull, 2000). These designs incorp-
orate interim analyses that allow for early rejection of null hypotheses; efficacy stopping,
or early stopping for lack of benefit; futility stopping. This way, the expected sample
size required can be reduced over the more classical single-stage approach. Moreover,
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multi-arm multi-stage designs, which allow multiple experimental treatments to share a
control group, can increase efficiency even further (Parmar et al., 2014).
Group sequential methods are not frequently used in crossover trial settings however,

in particular ones with multiple experimental treatments. Hauck et al. (1997) investigated
the performance of group sequential trials for average bioequivalence employing an AB/
BA crossover design, and Jennison and Turnbull (2000) provided one possible analysis
method for a group sequential AB/BA crossover with a normally distributed endpoint. To
the best of our knowledge, no study has explored group sequential theory for crossover
trials with more than one experimental treatment being compared to a shared control.
Thus, one possible explanation for the lack of group sequential crossover trials may be

that there is not yet available a formal proof of how to strongly control the familywise
error rate of such a trial with multiple experimental treatments, because such a proof is
usually required for regulatory approval (Wason et al., 2014). In comparison to a proof
for a parallel multi-arm multi-stage design (Magirr et al., 2012), proving strong control
of the familywise error rate is complicated here due to difficulties associated with the
covariance structure implied by mixed model analysis. As has been remarked, multiple
testing corrections for mixed models are only presently available for certain specific cir-
cumstances (Bender and Lange, 2001). Extension to this setting is particularly significant,
though, given the noted advantages of comparing multiple experimental treatments to a
shared control, in terms of both trial management and sample size (Parmar et al., 2014).
Potential exists, given a proof, for the efficiency of crossover trial designs to be

improved. In this work, we begin by providing such a proof for a linear mixed model
using period and treatment as fixed effects and individuals as random effects. Following
this, using the four-treatment, four-period TOMADO trial (Quinnell et al., 2014) as an
example, we explore and discuss the efficiency gains that group sequential designs could
bring in a crossover setting.

2. Methods

2.1. Notation, hypotheses, and analysis

The trial is assumed to have D � 2 treatments initially, indexed d ¼ 0; :::;D� 1.
Treatments d ¼ 1; :::;D� 1 are experimental, to be compared to the control d ¼ 0. A
maximum of L stages are planned for the trial. At each stage, patients are allocated to
each of a set of treatment sequences, which specify an order in which a patient receives
treatments. The sequences used at each stage are determined by the number of treat-
ments remaining in the trial at that stage. Without loss of generality, we will assume
that if a treatment or treatments are dropped, treatment D� 1 is dropped first, then
D� 2, and so on, because treatments can always be relabeled at each interim analysis.
Then, we denote by Sr ¼ fsri : i ¼ 1; :::; jSrjg; r ¼ 2; :::;D, the set of sequences for patient
treatment allocation when r treatments remain in the trial, with each Sr written in the
form assuming that it is exactly treatments d ¼ 0; :::; r � 1 that remain. We further
constrain each Sr to contain only complete block sequences that are balanced for period.
Specifically, complete block allocation requires all sequences to contain each treatment
remaining in the trial exactly once, and period balance requires an equal number
of patients to receive each treatment remaining in the trial in each period. These
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constraints allow the use of the popular Latin and Williams squares (Jones and
Kenward, 2014).
A fixed group size n is used for each stage of the trial and is chosen such that at

every stage each sequence is used an equal number of times. Thus, n must be divisible
by the lowest common multiple of jS2j; :::; jSDj. Designing the trial in this manner
ensures that each treatment is considered equally.
Outcome data are assumed to be normally distributed, and a linear mixed model is

used for analysis, given by

yijkl ¼ l0 þ pj þ sd½j;k;l� þ sikl þ Eijkl;

or
Y ¼ Xbþ Zbþ e;

where

� Y is the vector of responses, containing the values of the yijkl; the response for
individual i, in period j, on sequence k, in stage l,

� b is the vector of fixed effects, of length 2D� 1, consisting of
� l0 the mean response on treatment 0 in period 1, an intercept term,
� pj the fixed period effect for period j, with the identifiability constraint p1 ¼ 0.

Note that the period is reset to 1 for each new stage of the trial. That is, the
first period of stage 2 is treated as period 1 rather than period Dþ 1, also used
in later stages. Thus, we have exactly D� 1 non-zero period effects given our
restriction to complete block sequences.

� sd½j;k;l� is thes fixed direct treatment effect for an individual in period j, on
sequence k, in stage l, with the identifiability constraint s0 ¼ 0,

� X is the matrix linking the fixed effects to the vector of responses,
� b is the vector of random effects, consisting of the sikl; the random effect for indi-

vidual i, on sequence k, in stage l,
� Z is the matrix linking the random effects to the vector of responses,
� e is the vector of residuals, consisting of the Eijkl; the residual for individual i, in

period j, on sequence k, in stage l.

Additionally, denoting by r2b > 0 and r2e > 0 the between- and within-subject variances,
respectively, we take

covðsi1k1 l1; si2k2 l2Þ ¼ r2bdi1i2dk1k2dl1 l2;

covðEi1j1k1 l1; Ei2j2k2l2Þ ¼ r2edi1i2dj1j2dk1k2dl1 l2;

where dij is the Kronecker delta function. Incorporation of fixed effects for period and
treatment only and our chosen covariance structure above are the conventional choices
for a crossover trial (Jones and Kenward, 2014).
We test D� 1 hypotheses. Because we are interested in testing the efficacy of

experimental treatments in comparison to a control, we consider the case of one-sided
alternative hypotheses H0d : sd � 0;H1d : sd>0; for d ¼ 1; :::;D� 1.
At each interim analysis, the above model is used to compute an estimate, b̂l

ðl ¼ 1; :::; LÞ, for b through the standard maximum likelihood estimator of a linear
mixed model
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b̂ l ¼ ðXTR�1XÞ�1XTR�1Y �MVN b; ðXTR�1XÞ�1
� �

;

where R ¼ Zcovðb; bÞZT þ covðE; EÞ (Fitzmaurice et al., 2011). From this we acquire

ŝl ¼ ðŝ1l; :::; ŝD�1lÞT, which consists of the maximum likelihood estimates for each sd.

Then, each ŝdl is standardized to give D� 1 test statistics Zdl ¼ ŝdlI
1=2
dl ; d ¼ 1; :::;D� 1,

with Idl ¼ fvarðŝdlÞg�1 the information level for treatment d at interim analysis l. Since

ŝl is estimated via a normal linear model, we know that EðZdlÞ ¼ sdI
1=2
dl (Jennison and

Turnbull, 2000).
Given fixed futility boundaries, fdl, and efficacy bounds, edl, the following stopping

rules are used at each analysis l ¼ 1; :::; L, for each experimental treatment d ¼
1; :::;D� 1 satisfying fdm � Zdm<edm for m ¼ 1; :::; l� 1

� if Zdl< fdl treatment d is dropped without rejecting H0d,
� if fdl � Zdl<edl the trial is continued with treatment d still present,
� and if edl � Zdl treatment d is dropped and H0d rejected.

The control treatment, d¼ 0, remains present at every undertaken stage, and we only
proceed to an additional stage if there is at least one experimental treatment remaining
in the trial. It is convenient to take fdl ¼ fl and edl ¼ el for all d and l, as well as fL¼ eL
in order to ensure that the trial conforms to the desired maximum number of stages
and so that a conclusion is made for each H0d. Note that rejection of one treatment’s
null hypothesis does not end the trial. Furthermore, with this formulation, once a treat-
ment is dropped from the trial, its standardized treatment effect is not tested in any
future analyses.
In what follows, we will make use of the vectors xR ¼ ðxR1; :::;xRD�1ÞT and

wR ¼ ðwR1; :::;wRD�1ÞT . Here, xRd 2 f1; :::; Lg is the analysis at which experimental
treatment d was dropped from the trial. Moreover, wRd 2 f0; 1g with wRd ¼ 1 if experi-
mental treatment d was dropped for efficacy and 0 otherwise. Prior to a trial’s com-
mencement, xR and wR are unknown random variables. However, the probability that

the trial progresses according to some particular x ¼ ðx1; :::;xD�1ÞT and

w ¼ ðw1; :::;wD�1ÞT , given a vector of true response rates s ¼ ðs1; :::; sD�1ÞT , can be
computed using multivariate normal integration. More specifically, given this particular
ðx;wÞ pair, the covariance between and the information level of the test statistics can be
computed and the following integral evaluated (see Jennison and Turnbull [2000] or
Wason [2015] for further details):

prðxR ¼ x;wR ¼ wjsÞ ¼
ðuð1;x1;w1Þ

lð1;x1;w1Þ
:::

ðuðL;xD�1;wD�1Þ

lðL;xD�1;wD�1Þ
/ x; rðs; LÞ�I1=2ðx;wÞ;Kðx;wÞgdxLðD�1Þ ::: dx11;
n

where

� x ¼ ðx11; . . . ; x1ðD�1Þ; . . . ; xL1; . . . ; xLðD�1ÞÞT ,
� ϕfx; μ;Kg is the probability density function of a multivariate normal distribu-

tion with mean μ and covariance matrix K, evaluated at vector x,
� rðs; LÞ is the vector formed by repeating s L times,
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� Iðx;wÞ ¼ IT1;ðx;wÞ; . . . ; I
T
L;ðx;wÞ

� �T
, where Il;ðx;wÞ ¼ ðI1l; . . . ; IðD�1ÞlÞTðx;wÞ is the vector

of information
levels for the estimated treatment effects at interim analysis l, according to
(conditional on) the particular ðx;wÞ being considered,

� � denotes the Hadamard product of two vectors,
� the square root of the vector Iðx;wÞ is taken in an element-wise manner,
� l and u are functions that tell us the lower and upper integration limits for the

test statistic Zdl given values for l, xd and wd. For example, lð1; 2; 1Þ ¼ f1 and
uð1; 2; 1Þ ¼ e1, while lð2; 2; 1Þ ¼ e2 and uð2; 2; 1Þ ¼ 1, and then lðl; 2; 1Þ ¼ �1
and uðl; 2; 1Þ ¼ 1 for l> 2,

� Kðx;wÞ is the covariance matrix between the standardized test statistics at and
across each interim analysis according to ðx;wÞ. Thus, using

Zl ¼ ðZ1l; . . . ;ZD�1lÞT, we have

Kðx;wÞ ¼
covðZ1;Z1jx;wÞ ::: covðZ1;ZLjx;wÞ

..

. . .
. ..

.

covðZL;Z1jx;wÞ ::: covðZL;ZLjx;wÞ

0
B@

1
CA:

However, Zl ¼ ŝl�I
1=2
l;ðx;wÞ, and by the properties of normal linear models

covðŝl1 ; ŝl2 jx;wÞ ¼ covðŝl2 ; ŝl2 jx;wÞ ðl1; l2 ¼ 1; :::; L; l1 � l2Þ (Jennison and Turnbull,
2000), giving

covðZl1 ;Zl2 jx;wÞ ¼ diagðI1=2l1;ðx;wÞÞcovðŝl2 ; ŝ l2 jx;wÞdiagðI
1=2
l2;ðx;wÞÞ; (2.1)

for l1; l2 ¼ 1; :::; L; l1 � l2, and where diagðvÞ is the matrix formed by placing the
elements of vector v along the leading diagonal.
Note that equation (2.1) in conjunction with the expectations of our standardized test

statistics and the observation that ðZT
1 ; :::;Z

T
LÞT is multivariate normal can be restated

simply as that our test statistics follow the canonical joint distribution (Jennison and
Turnbull, 2000).

2.2. Familywise error rate control

It is a common requirement of clinical trial designs that the probability of one or more
false rejections within the family of null hypotheses is not greater than some a. This is
known as strong control of the familywise error rate. In this section, we establish strong
control for our considered trial design.
To evaluate the familywise error rate of a design, for any s, the above integral can be

evaluated for all x and w that would imply that a type-I error is made and the results
summed. In order to demonstrate how to strongly control, though, it is essential to
know the forms of the Il;ðx;wÞ and Kðx;wÞ for each ðx;wÞ. However, by equation (2.1),
the Il;ðx;wÞ and Kðx;wÞ can be determined if covðb̂l; b̂ljx;wÞ is known for l ¼ 1; :::; L.
Thus, consider the matrix covðb̂l; b̂ljx;wÞ for some l � L and any ðx;wÞ. We com-

pute values for Llr ðr ¼ 1; :::;DÞ, the number of stages of the trial, up to analysis l, in
which r treatments were remaining. Because we do not continue the trial unless at least
one experimental treatment remains, Ll1 ¼ 0 always. It will be convenient, however, to
still include this value. Moreover, it is clear that the Llr are uniquely determined given
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ðx;wÞ. Now, covðb̂l; b̂ljx;wÞ can always be decomposed to be a sum over the deter-
mined Llr and the pre specified sequences Sr (see Fitzmaurice et al. [2011] for details):

covðb̂ l; b̂ ljx;wÞ ¼ covðb̂ l; b̂ ljLl1; :::; LlDÞ;¼
XD
r¼1

Llr
n
jSrj
XjSr j
i¼1

XT
sriR

�1
r Xsri

0
@

1
A�1

:

Here Xsri is the uniquely defined r � ð2D� 1Þ design matrix for a single patient allo-
cated to sequence sri, and Rr is the easily computed r� r covariance matrix of the
responses for a single patient allocated r treatments in total. The factor n=jSrj arises
from the number of patients allocated to each sequence sri by our choice of
period balance.
We now establish two key results about covðb̂l; b̂ljLl1; :::; LlDÞ. Following this, we

provide a proof detailing how to strongly control the familywise error rate.

Theorem 2.1. Let b ¼ ðl0;p2; :::; pD; s1; :::; sD�1ÞT . Consider an analysis to be performed
after some number of stages l. Then

1. We have

covðb̂ l; b̂ ljLl1; :::; LlD�1 ¼ 0; LlD ¼ lÞ ¼ ln
jSDj

XjSDj
i¼1

XT
sDiR

�1
D XsDi

0
@

1
A�1

;

¼ 1
ln

F GT GT

G H 0D�1;D�1

G 0D�1;D�1 H

0
BB@

1
CCA;

(2.2)

where

F ¼ r2b þ
2D� 1

D
r2e ;

Gpq ¼ �r2e ðp ¼ 1; :::;D� 1; q ¼ 1Þ;
Hpq ¼ r2eð1þ dpqÞ ðp ¼ 1; :::;D� 1; q ¼ 1; :::;D� 1Þ:

2. If q � 2 is the largest integer such that Llr¼ 0 for r ¼ 1; :::; q� 1, then the covari-
ance of the estimates of the fixed effects p̂2l; :::; p̂ql; ŝ1l; :::; ŝq�1l is identical to what
it would be for Ll1 ¼ 	 	 	 ¼ LlD�1 ¼ 0. Moreover, the covariance between the esti-
mates of p̂2l; :::; p̂ql; ŝ1l; :::; ŝq�1l and the estimates of p̂qþ1l; :::; p̂Dl; ŝql; :::; ŝD�1l is
also identical to what it would be for Ll1 ¼ 	 	 	 ¼ LlD�1 ¼ 0.

Proof. See Appendix C.

Note that part (1) of the above theorem implies

covðŝd1 l; ŝd2 ljLl1 ¼ 	 	 	 ¼ LlD�1 ¼ 0; LlD ¼ lÞ ¼ r2e
ln

ð1þ dd1d2Þ;
for d1; d2 2 f1; :::;D� 1g. This is the familiar result for complete block sequences that
there is no dependence upon the between-patient variance r2b (Jones and Kenward, 2014). w

Theorem 2.2. A group sequential crossover trial of the type considered, with D � 2, test-
ing the D� 1 hypotheses H0d : sd � 0;H1d : sd>0, attains a maximal value of its family-
wise error rate for s1 ¼ 	 	 	 ¼ sD�1 ¼ 0.
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Proof. Theorem 2.1 implies that elements of the covariance matrix covðŝl; ŝlÞ that differ
from the case where no treatments have been dropped are exactly those corresponding to
unstandardized test statistics no longer of importance. Consequently, the values of Il;ðx;wÞ
and Kðx;wÞ that differ from the case x ¼ ðL; :::; LÞT are only ever those corresponding to
limits of integration given by ð�1;1Þ in our computation of prðxR ¼ x;wR ¼ wjsÞ. By
the marginal distribution properties of the multivariate normal distribution, we therefore
need only consider one matrix Kðx;wÞ and one set of vectors Il;ðx;wÞ ðl ¼ 1; :::; LÞ, exactly
those given by the case x ¼ ðL; :::; LÞT. Denote these by K and Il, and set

I ¼ ðIT1 ; :::; ITLÞT. For more information on this, see Appendix A. We now have

prðxR ¼ x;wR ¼ wjsÞ ¼
ðuð1;x1;w1Þ

lð1;x1;w1Þ
:::

ðuðL;xD�1;wD�1Þ

lðL;xD�1;wD�1Þ
/ x; rðs; LÞ�I1=2;K
n o

dxLðD�1Þ:::dx11:

Now, consider without loss of generality the probability that we reject H01, and
denote by X and W the sets of all possible x and w, respectively. By integrating over all
possible values of x2; :::;xD�1 and w2; :::;wD�1, we have that the probability that we
reject each H01 does not depend on the values of s2; :::; sD�1; that is, on the other treat-
ments tested:

prðReject H01jsÞ ¼
X

fw2W:w1¼1g

X
x2X

prðxR ¼ x;wR ¼ wjsÞ;

¼
X

fw2W:w1¼1g

X
x2X

ðuð1;x1;w1Þ

lð1;x1;w1Þ
:::

ðuðL;xD�1;wD�1Þ

lðL;xD�1;wD�1Þ
/fx; rðs; LÞ�I1=2;Kg

dxLðD�1Þ:::dx11;

¼
XL
x1¼1

ðuð1;x1;1Þ

lð1;x1;1Þ
:::

ðuðL;x1;1Þ

lðL;x1;1Þ
/fðx11; :::; xL1ÞT; rðs1; LÞ�I1=2s1 ;Ks1g

dxL1:::dx11;

where Is1 and Ks1 are the restrictions of I and K to rows and columns corresponding to
experimental treatment d¼ 1 respectively. This final form for pr Reject H01js

� �
is identi-

cal to what it would be in the case D¼ 2. Therefore, to ascertain the s giving the max-
imal familywise error rate of a trial with D � 2, it suffices to consider which s
 � 0
maximizes the probability that H01 is rejected in a trial with D¼ 2 initial treatments.

For then, s ¼ ðs
; :::; s
ÞT using this s
 will provide the maximum probability of reject-
ing at least one true H0d for some d; that is, the maximum familywise error rate. To see

this, consider the familywise error rate for s ¼ ðs
; :::; s
ÞT. If one changes some individ-
ual element sd1 of this vector, this does not effect the probability that H0d2 is rejected for
d2 6¼ d1, and it can only decrease the probability that H0d1 is incorrectly rejected. Thus,

overall, straying from this s ¼ ðs
; :::; s
ÞT can only decrease the familywise error rate.
Thus, now consider all possible realizations of the test statistics of a trial with D¼ 2

and their associated values of ðx;wÞ ¼ ðx1;w1Þ. We have Z ¼ ðZ11; :::;Z1LÞT 2 RL, with
Z1L ¼ 	 	 	 ¼ Z1x1 if the trial was stopped at stage x1. Now consider increasing the value
of the test statistics by some g> 0. All instances before where H01 was rejected will still
exceed the efficacy bound of that stage, or earlier, and so H01 will still be rejected.
Therefore, the probability of rejecting H01 is at least as large as before. Thus, increasing
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the value of s1 � 0 causes a non-decreasing change in the value of the type-I error rate.
Therefore, the probability of rejecting H01 is maximized by s1 ¼ 0, implying in turn that
the maximal familywise error rate of a trial with D � 2 is given
by s ¼ ðs1; :::; sD�1ÞT ¼ ð0; :::; 0ÞT. w

2.3. Design characteristics

A trial will now be fully specified given values for D, L, r2e , and n, as well as choices for
Sr and the futility and efficacy boundaries f1; :::; fL and e1; :::; eL, respectively. Given
these, K and I can be computed using the results above. Then, by Theorem 2.2 we can
strongly control the familywise error rate to a for this design using the following sum of
integrals:

a ¼
X

fw2W:Rdwd>0g

X
x2X

ðuð1;x1;w1Þ

lð1;x1;w1Þ
:::

ðuðL;xD�1;wD�1Þ

lðL;xD�1;wD�1Þ
/ x; rð0; LðD� 1ÞÞ;K� �

dxLðD�1Þ:::dx11:

Additionally, suppose that we wish to power this trial to reject a particular null
hypothesis, without loss of generality H01, at some clinically relevant difference s1 ¼ d.
The type-II error rate b for H11 is then given by

b ¼ 1�
XL
x1¼1

ðuð1;x1;1Þ

lð1;x1;1Þ
:::

ðuðL;x1;1Þ

lðL;x1;1Þ
/ ðx11; :::; xL1ÞT; rðd; LÞ�I1=2s1 ;Ks1

n o
dxL1:::dx11:

Moreover, denoting by N and O the total number of patients and observations
required by the trial, respectively, we can compute the expected sample size, EðNjsÞ, or
expected number of observations, EðOjsÞ, for any s, according to

EðNjsÞ ¼
X
w2W

X
x2X

prðxR ¼ x;wR ¼ wjsÞNðx;wÞ;

EðOjsÞ ¼
X
w2W

X
x2X

prðxR ¼ x;wR ¼ wjsÞOðx;wÞ:

Here, Nðx;wÞ and Oðx;wÞ are functions that give the number of patients and obser-
vations, respectively, required by a trial that progresses according to ðx;wÞ. Specifically

Nðx;wÞ ¼ nmax
fd¼1;:::;D�1g

xd;

Oðx;wÞ ¼ n
XL
l¼1

XD�1

d¼1

Ifxd�lg þ 1

 !
;

where Ifxd�lg ¼ 1 if xd � l and 0 otherwise.

3. Example: TOMADO

As an example of how to design a group sequential crossover trial with strong control
of the familywise error rate, we will make use of the TOMADO crossover randomized
controlled trial (Quinnell et al., 2014). This open-label trial compared three experimental
treatments to a single control for the treatment of sleep apnea-hypopnea using a four-
treatment four-period crossover design. The normally distributed secondary endpoint,
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Epworth Sleepiness Scale, was used to observe negative test statistics. Therefore, we con-
sider the decrease as the endpoint in order to retain the same hypothesis tests as before
H0d : sd � 0;H1d : sd > 0; d¼ 1, 2, 3. The trial planned to recruit 90 patients, and utiliz-
ing restricted error maximum likelihood estimation, the final analysis calculated that
r2e ¼ 6:51. Taking this variance as the truth, the trial had a familywise error rate a ¼
0:05 for s ¼ ðs1; s2; s3ÞT ¼ ð0; 0; 0ÞT, and b ¼ 0:2 for H11 at s1 ¼ 1:11.
Many methods exist for determining boundaries for a one-sided group sequential trial

with parallel treatment arms. Here, we consider analogues of the power family bounda-
ries of Pampallona and Tsiatis (1994). For this, values for the desired type-I and type-II
error rates, a clinically relevant difference d, the maximum number of stages L,
the within-person variance r2e , and a shape parameter D must be specified. A two-
dimensional grid search is then used to find the exact required maximal sample size.
From this, a suitable value of n is identified by rounding up to the nearest integer such
that n is as required divisible by jS2j; :::; jSDj. Utilizing Williams squares for our designs,
n was forced to be divisible by 12.
Taking a ¼ 0:05; b ¼ 0:2; d ¼ 1:11;r2e ¼ 6:51, L¼ 3, and D ¼ �0:25, 0, 0.5, 0.5 as

examples, group sequential crossover trial designs were determined and compared to the
single-stage design used by TOMADO. All computations were done in R (R Core Team,
2016) using the package groupSeqCrossover, available from https://github.com/mjg211/
article_code. Matlab (The Mathworks Inc., 2016) code employing symbolic algebra is
also available to return the matrices given by several of the equations in the text. Use of
both the R and Matlab code is detailed in Appendix D.
A summary of the performance of the designs is provided in Table 1, and their com-

puted boundaries are displayed in Figure 1. We can see that, as is the case for two-arm
parallel trial designs, there is a trend that larger values of D result in larger maximum
sample sizes and lower expected sample sizes due to their larger stopping regions.
However, this is not the case for D ¼ 0:25 because of the requirement to round to a
suitable integer value of n.
Plots of the probability of rejecting H01 and rejecting H0d for some d¼ 1, 2, 3 are pro-

vided for a range of values of h when s ¼ ðh; h; hÞT in Figure 2. The power curves are
similar for all of the designs, with the only differences a result of rounding in the group
sequential designs to achieve suitable values of n.

Table 1. Example design performance. Summary of the performance of the single-stage and
considered group sequential designs.a

Design

Single-stage D ¼ �0:25 D¼ 0 D ¼ 0:25 D ¼ 0:5

n 90 36 36 48 48
pr Reject H01js ¼ 0ð Þ 0.02 0.02 0.02 0.02 0.02
pr Reject H01js ¼ dð Þ 0.80 0.85 0.83 0.90 0.83
pr Reject H0d for some djs ¼ 0ð Þ 0.05 0.05 0.05 0.05 0.05
pr Reject H0d for some djs ¼ dð Þ 0.95 0.97 0.97 0.98 0.97
E Njs ¼ 0ð Þ 90.0 76.8 70.0 82.6 69.6
E Njs ¼ dð Þ 90.0 100.3 95.7 110.7 98.9
E Ojs ¼ 0ð Þ 360.0 269.3 240.3 283.1 244.5
E Ojs ¼ dð Þ 360.0 367.2 341.8 380.4 327.7
maxN 90 108 108 144 144
maxO 360 432 432 576 576
aThe number of decimal places displayed in each row indicates the number to which rounding was performed.
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As is to be expected for group sequential designs, the maximum sample size and max-
imum number of observations are larger than those for the single-stage design.
However, the group sequential designs have lower expected sample sizes under the glo-
bal null hypothesis ðs ¼ 0 ¼ ð0; 0; 0ÞTÞ, up to a maximum of 23% for D ¼ 0:5. This
does, however, come at the expense of an increased expected sample size under the glo-
bal alternative hypothesis ðs ¼ d ¼ ðd; d; dÞTÞ.
From Figure 3, the expected sample sizes of the group sequential designs can be seen

to be far lower than those of the single-stage design for more extreme values of h. A
similar statement holds for the expected number of observations. However, in this
instance for D¼ 0, 0.5, the performance of the group sequential designs is better than
the single-stage design across all values of h.

4. Discussion

There is a long history on group sequential clinical trials. Very few, however, utilize a
crossover design. This may be at least in part due to no formal proof existing for how
to strongly control the familywise error rate of such a trial. Here, we provided such a
proof and then explored the performance of several sequential designs for the
TOMADO trial.
The expected sample size of the sequential designs was observed to be far lower than

that of the single-stage design for a large range of values of the true response rate on all
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Figure 1. Stopping boundaries. Computed efficacy and futility boundaries of the considered group
sequential designs.
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experimental treatments. Unfortunately, but unsurprisingly given that the trial is not
stopped unless all experimental treatments are dropped, there are regions in which the
sequential designs are less efficient. Indeed, this region includes some values of h
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Figure 2. Power curves. Power curves of the single-stage (L¼ 1) and considered group sequential
designs across a range of values of the true response rate in the experimental treatment arms h.
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between 0 and d, which may be more realistic observed treatment effects. However, for
some considered designs, this region is very small and does not include values near 0,
which is notable for ethical reasons. This issue could even be further alleviated by utiliz-
ing optimal stopping boundaries, as has been proposed for parallel arm designs (Wason
and Jaki, 2012; Wason et al., 2012). Importantly, several of the designs always performed
better than the single-stage design in terms of the expected number of observations
required, which could be a significant factor in the cost and length of a trial.
Consequently, we can conclude that a group sequential approach to a crossover trial
improves efficiency in some circumstances.
Several possible extensions to our work present themselves. For example, we assumed

that the period was reset in each trial stage. This could reflect a scenario where it is
believed being enrolled in the trial will alter a patient’s behavior. However, in some
cases, such as to deal with seasonal effects, it would be preferential to have different
period effects in each stage.
One simple extension would be to employ non-inferiority tests, from our present

superiority testing framework. Non-inferiority tests, seeking to determine whether new
treatments are not clinically worse than an established control, would have hypotheses
shifted by some factor from the ones presented here. Theorem 2.2 could easily be
altered to accommodate this and then popular methods for boundary determination in
this setting could be applied.
Here, we have worked under an idealized scenario, assuming the within-patient vari-

ance to be known prior to trial commencement. Though this is a common assumption
in group sequential theory, it does have limitations, because often a good estimate for
the key variance parameter cannot be provided at the design stage. In this instance,
group sequential t-tests would almost certainly be required. Furthermore, simulation is
required to quantify error rates accurately in the case of small sample sizes. To explore
this scenario, we analyzed the true familywise error rate under the global null hypothesis
of a particular design motivated again by the TOMADO trial but with L¼ 2 and n¼ 12.
We found that provided that restricted error maximum likelihood was utilized, there
was very little inflation in the familywise error rate over the nominal level a. Details of
this are provided in Appendix B.
Moreover, we have only explored designing group sequential crossover trials. It is

well known that if a final analysis is performed on data acquired in a sequential trial,
not taking into account the sequential nature, then biased treatment effects will be
acquired. Extending established methodology for parameter estimation to our scenario
will thus be important.
Finally, we have implicitly assumed that there will be no patient dropout and have

not discussed the issue of patient recruitment rates. Though these are problems for all
adaptive designs, it is important to give them note. Due to our need for one stages,
data to be analyzed before the commencement of the following stage, it is likely that
the length of a trial using our approach would be longer for certain recruitment rates.
It could be that recruitment is paused at interim or that patients are continually
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recruited under the old scheme until results are available, which would lead to overrun
and an increase in the expected number of observations and sample size. Thus, this
would be an important factor to consider when choosing an appropriate design for
a trial.
Nevertheless, for future crossover trials, consideration should be given to a group

sequential approach. This may substantially assist in the efficient prioritization of effica-
cious treatments.

Appendix A: Further technical details

As discussed in Section 2, part (1) of Theorem 2.1 implies that

covðŝd1 l; ŝd2 ljLl1; :::; LlD�1 ¼ 0; LlD ¼ lÞ ¼ r2e
ln

ð1þ dd1d2Þ;

for d1; d2 2 f1; :::;D� 1g. Alternatively, it tells us that in this case Idl ¼ ln=ð2r2eÞ,
for d ¼ 1; :::;D� 1.

Moreover, using the above along with equation (2.1), in conjunction with part (2) of
Theorem 2.1, we have that if fp � Zd1p<ep for p ¼ 0; :::; l1 � 1 (i.e., if treatment d1 is present
up to stage l1) and fq � Zd2q<eq for q ¼ 0; :::; l2 � 1 (i.e., if treatment d2 is present up to
stage l2), with l1 � l2; l1; l2 2 f1; :::; Lg, and d1; d2 2 f1; :::;D� 1g (taking f0 ¼ �1 and
e0 ¼ 1),

Id1a ¼
an
2r2e

;

Id2b ¼
bn
2r2e

;

covðZd1a;Zd2bjx;wÞ ¼ I1=2d1a
covðŝd1b; ŝd2bjLb1; :::; LbDÞI1=2d2b

¼ an
2r2e

� 	1=2 r2e
bn

ð1þ dd1d2Þ
bn
2r2e

� 	1=2

;

¼ 1
2

a
b

� 	1=2

ð1þ dd1d2Þ;

for a � b; a ¼ 1; :::; l1, and b ¼ 1; :::; l2.
For further clarity, as an example, consider the case D¼ 3, L¼ 2, and the associated value of

pr xR ¼ x;wR ¼ wjsð Þ when x ¼ ð2; 1ÞT and w ¼ ð1; 0ÞT. Using the above, we know the follow-
ing elements of the matrix Kðx;wÞ and vector Iðx;wÞ ¼ ðIT1;ðx;wÞ; IT2;ðx;wÞÞT:

Table B.1. Performance of the small sample size group sequential crossover trial design under four
analysis procedures. Specifically, pr reject H0d for some djs ¼ 0ð Þ is shown for each procedure to
three decimal places based on 10,000 trial simulations.a

Procedure Estimation Boundary adjustment pr reject H0d for some djs ¼ 0ð Þ
Procedure 1 ML No 0.077
Procedure 2 ML Yes 0.062
Procedure 3 REML No 0.055
Procedure 4 REML Yes 0.051
aML¼Maximum likelihood, REML¼ restricted error maximum likelihood.

SEQUENTIAL ANALYSIS 187



Kðx;wÞ ¼

1
1
2

1
2

� �1=2 �
1
2

1
1
2

1
2

� 	1=2

�

1
2

� �1=2 1
2

1
2

� 	1=2

1 �
� � � �

0
BBBBBBBBB@

1
CCCCCCCCCA
;

Iðx;wÞ ¼
n
2r2e

;
n
2r2e

;
2n
2r2e

; �
� 	T

;

where we have used � to signify an element that we do not know the value of.
Now consider our computation of pr xR ¼ x;wR ¼ wjsð Þ. We have

pr xR ¼ x;wR ¼ wjsð Þ ¼
ðe1
f1

ðf1
�1

ð1
e2

ð1
�1

/ x; rðs; 2Þ�Iðx;wÞ;Kðx;wÞ
� �

dx22dx12dx21dx11:

As we have seen, we do not know the values of the final row and column of matrix Kðx;wÞ or
the final element of the vector Iðx;wÞ. But, the fact mentioned in Theorem 2.2 becomes clear: this
does not matter because the limits of integration corresponding to this variable are ð�1;1Þ.
Indeed, by the marginal distribution properties of the multivariate normal distribution, we need
only consider one matrix Kðx;wÞ and one set of vectors Il;ðx;wÞ, exactly those given by the case
x ¼ ðL; :::; LÞT. We denote these by K and Il and set I ¼ ðIT1 ; :::; ITLÞ. Explicitly, we have

covðZd1 l1 ;Zd2 l2Þ ¼ Kd1þðD�1Þðl1�1Þ;d2þðD�1Þðl2�1Þ;

¼ 1
2

l1
l2

� 	1=2

ð1þ dd1d2Þ;

Idl ¼ ln
2r2e

;

for any d; d1; d2 2 f1; :::;D� 1g and l1 � l2; l; l1; l2 2 f1; :::; Lg.

Appendix B: Small sample size performance

For small sample sizes, simulation is required to accurately determine a design’s performance.
Because crossover trials are routinely conducted with small sample sizes, here we explore the
impact this has upon the familywise error rate under the global null hypothesis.

We determined a design corresponding to the TOMADO example that would require only 12
patients in each of two stages, the smallest allowable maximum sample size for a group sequential
crossover trial with D¼ 4 treatments initially, given our restrictions on n. Taking D¼ 0 as an
example, a trial with n¼ 12 and L¼ 2 with f1 ¼ 0:768; f2 ¼ 2:036, and e1 ¼ 2:879 to three decimal
places would, using our multivariate normal calculations, have a maximal familywise error rate of
a ¼ 0:05 under the global null hypothesis, and b ¼ 0:2 for d ¼ 2:2 when r2e ¼ 6:51.

Ten thousand of these trials were simulated in order to ascertain the true probability of reject-
ing H0d for some d¼ 1, 2, 3, when s ¼ ð0; 0; 0ÞT. For simplicity, pj was set to 0 for j ¼ 2; :::;D,
and l0 was set to 0. Incorporating non-zero period effects, however, would not be expected to
greatly affect the results.

Whitehead et al. (2009) proposed a quantile substitution procedure for adapting the boundaries
of a sequential trial to be more suitable to the case of unknown variance. We additionally consid-
ered employing this procedure. Given that there is no consensus on how to determine the degrees
of freedom when analyzing using linear mixed models, we took the degrees of freedom at any
analysis to be the classical decomposition of degrees of freedom in balanced, multilevel analysis
of variance designs (Pinheiro and Bates, 2009). Moreover, we assessed the performance of the
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sequential design when the linear mixed model was fitted through either maximum likelihood or
restricted error maximum likelihood estimation. Therefore, in total, these simulations were per-
formed for each of four possible analysis procedures: maximum likelihood or restricted error
maximum likelihood estimation, with or without boundary adjustment through quantile
substitution.

Thus, for each simulated study, patient response data for each stage l were randomly generated
according to the distribution implied by their allocated treatment sequence (assigned according to
the rules of the trial design), using the function rmvnorm (Genz et al., 2016) in R. The between-
person variance was set to r2b ¼ 10:12, the value ascertained in the final analysis of the
TOMADO trial data. Following this, our linear mixed model was fitted on all accumulated data
(with either maximum likelihood or restricted error maximum likelihood estimation according to
the particular analysis procedure being considered) and Zdl ¼ ŝdlÎ

1=2
dl determined for d¼ 1, 2, 3,

where Î
1=2
dl is the observed Fisher information for ŝdl. Then, each Zdl was compared to el and fl

and our stopping rules were applied (with el and fl adjusted using quantile substitution if the ana-
lysis procedure under consideration so dictated). If for some d¼ 1, 2, 3, fl � Zdl<el, the trial pro-
ceeded to the following stage and the process was repeated. In each instance, simulations in
which H0d was rejected for some d¼ 1, 2, 3 were recorded in order to ascertain true rejec-
tion rates.

The performance of these procedures is displayed in Table B.1. We observe that when max-
imum likelihood estimation is utilized and the boundaries are not adjusted using the procedure
of Whitehead et al. (2009), there is substantial inflation in the familywise error rate under the glo-
bal null hypothesis to 0.077. However, when restricted error maximum likelihood estimation is
used, there is only negligible inflation if adjustment of the boundaries is employed. A program to
perform this analysis is available. Its use is detailed in Appendix D.

Appendix C: Technical proofs

Lemma C.1. Element pq of R�1
r is given by

R�1
rpq ¼

1
r2eðr2e þ rr2bÞ

ðr2e þ rr2bÞdpq � r2b
� �

: (C.1)

Proof. We demonstrate this by verifying RrpsR
�1
rsq ¼ dpq. From the chosen covariance for a

patient’s responses, we have that element pq of Rr is given by

Rrpq ¼ r2bZrpsZ
T
rsq þ r2edpq ¼ r2b þ r2edpq; (C.2)

where Zrpq; ðp ¼ 1; q ¼ 1; :::; rÞ, is the pqth element of Zr , the random effects design matrix for a
single individual when there are r treatments remaining. Then

RrpsR
�1
rsq ¼

1
r2eðr2e þ rr2bÞ

Xr
s¼1

r2b þ r2edps
� � ðr2e þ rr2bÞdsq � r2b

� �
;

¼ 1
r2eðr2e þ rr2bÞ

Xr
s¼1

r2bðr2e þ rr2bÞdsq � r4b þ r2eðr2e þ rr2bÞdpq � r2er
2
bdps

� �
;

¼ 1
r2eðr2e þ rr2bÞ

r2bðr2e þ rr2bÞ � rr4b þ r2eðr2e þ rr2bÞdpq � r2er
2
b

� �
;

¼ dpq;

using
X
s

dsq ¼
X
s

dps ¼ 1.
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Lemma C.2. Take the vector of fixed effects b to be

b ¼ ðl0; p2; :::; pD; s2; :::; sD�1ÞT:
Then we have the following result:

XjSr j
i¼1

n
jSrjX

T
sriR

�1
r Xsri ¼ n

A BT 01;D�r BT 01;D�r

B C 0r�1;D�r E 0r�1;D�r

0D�r;1 0D�r;r�1 0D�r;D�r 0D�r;r�1 0D�r;D�r

B E 0r�1;D�r C 0r�1;D�r

0D�r;1 0D�r;r�1 0D�r;D�r 0D�r;r�1 0D�r;D�r

0
BBBBB@

1
CCCCCA; (C.3)

where 0m;n is a matrix of zeroes of dimension m� n, and

A ¼ rr2e
r2eðr2e þ rr2bÞ

;

Bpq ¼ rr2e
r2eðr2e þ rr2bÞ

ðp ¼ 1; :::; r � 1; q ¼ 1Þ;

Cpq ¼ 1
r2eðr2e þ rr2bÞ

fðr2e þ rr2bÞdpq � r2bg ðp ¼ 1; :::; r � 1; q ¼ 1; :::; r � 1Þ;

Epq ¼ 1
r

r2e
r2eðr2e þ rr2bÞ

ðp ¼ 1; :::; r � 1; q ¼ 1; :::; r � 1Þ:

Proof. Denote the columns of Xsri by

Xsri ¼ 1r P2r ::: PDr T1sri ::: TD�1sri

� �
:

Thus, Pjr is the column corresponding to the period effect pj, Tdsri to the treatment effect sd,
and 1r to the intercept l0. Using this representation and Lemma C.1, we have

XT
sriR

�1
r Xsri ¼

1Tr
PT

2r

..

.

TT
D�1sri

0
BBBB@

1
CCCCAR�1

r 1r P2r ::: TD�1sri

� �

¼

1Tr R
�1
r 1r 1Tr R

�1
r P2r ::: 1Tr R

�1
r TD�1sri

PT
2rR

�1
r 1r PT

2rR
�1
r P2r ::: PT

2rR
�1
r TD�1sri

..

. ..
. . .

. ..
.

TT
D�1sriR

�1
r 1r TT

D�1sriR
�1
r P2r ::: TT

D�1sriR
�1
r TD�1sri

0
BBBB@

1
CCCCA:

Here, dimðPjrÞ ¼ dimð1rÞ ¼ dimðTjsr iÞ ¼ r � 1, for all i and j. Therefore, 1Tr R
�1
r 1r;P

T
jrR

�1
r 1r ,

TT
jsriR

�1
r 1r; 1Tr R

�1
r Pjr, 1Tr R

�1
r Tjsri , P

T
jrR

�1
r Pkr, TT

jsriR
�1
r Tksri , and PT

jrR
�1
r Tksri are scalars for all i, j,

and k.
By the definition of being in period j, the vth element of Pjr is given by

Pjrv ¼ djv:

Because complete block design sequences are used, the vth element of Tjsri is given by

Tjsriv ¼ d1Ijsriv ;

where

Ijsriv ¼ 1 An individual on sequence sri receives treatment j in period v;
0 otherwise:




We denote this non-zero element, if it exists, by tj.
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Now from the symmetry present in R�1
r , using Lemma C.1 we haveX

j;k

R�1
rjk ¼ rr2e

r2eðr2e þ rr2bÞ
;

and X
j

R�1
rjk ¼

X
k

R�1
rjk ¼ r2e

r2eðr2e þ rr2bÞ
;

for all j and k. Therefore, we can determine the form of each of the scalar elements in the matrix
above as follows:

1Tr R
�1
r 1r ¼

X
j;k

R�1
rjk ¼ rr2e

r2eðr2e þ rr2bÞ
;

PT
jrR

�1
r 1r ¼ 1Tr R

�1
r Pjr ¼

X
k

R�1
rjk Ifj�rg ¼ r2e

r2eðr2e þ rr2bÞ
Ifj�rg;

TT
jsriR

�1
r 1r ¼ 1Tr R

�1
r Tjsri ¼

X
k

R�1
rtjkIfj�r�1g ¼ r2e

r2eðr2e þ rr2bÞ
Ifj�r�1g;

PT
jrR

�1
r Pkr ¼ R�1

rjk Ifj�rgIfk�rg ¼
ðr2e þ rr2bÞIfj¼kg � r2b

r2eðr2e þ rr2bÞ

( )
Ifj�rgIfk�rg;

TT
jsriR

�1
r Tksri ¼ R�1

rtjtkIfj�r�1gIfk�r�1g ¼
ðr2e þ rr2bÞIfj¼kg � r2b

r2eðr2e þ rr2bÞ

( )
Ifj�r�1gIfk�r�1g;

PT
jrR

�1
r Tksri ¼ R�1

rjtk
Ifj�rgIfk�r�1g ¼

ðr2e þ rr2bÞIfj¼tkg � r2b
r2eðr2e þ rr2bÞ

( )
Ifj�rgIfk�r�1g:

As a final step, we must compute the sum across sequences; that is, over the index i. We can

see instantly that we have confirmed the elements proposed to be 0 in
XjSr j
i¼1

nXT
sriR

�1
r Xsri=jSrj are

indeed so, and we therefore need only concentrate on the non-zero terms suggested: A, B, C,
and E.

However, other than PT
jrR

�1
r Tksri , all of the elements above have been identified as independent

of sequence sri. Therefore, computing the sum over the sri 2 Sr can be done easily and gives the
forms proposed for A, B, and C in the statement of the lemma immediately, on multiplying
through by n=jSrj. But, by our imposed constraint that sequences be balanced for the period, we
can also sum over the PT

jrR
�1
r Tksri

XjSr j
i¼1

n
jSrjP

T
jrR

�1
r Tksri ¼

n
jSrj

jSrj
r

1
r2eðr2e þ rr2bÞ

r2e þ ðr � 1Þr2b
� �� �

þ 1� jSrj
r


  �r2b
r2eðr2e þ rr2bÞ

( ) !
;

¼ n
jSrj

jSrj
r

r2e
r2eðr2e þ rr2bÞ

( )
;

¼ n
1
r

r2e
r2eðr2e þ rr2bÞ

;

since exactly jSrj=r patients receive each treatment at each time period. This confirms the form
proposed for E, and the proof is complete.

Theorem C.1. (Theorem 2.1 from Section 2) Let b ¼ ðl0; p2; :::; pD; s1; :::; sD�1ÞT. Consider an
analysis to be performed after some number of stages l. Then
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1. We have

covðb̂ l; b̂ ljLl1; :::; LlD�1 ¼ 0; LlD ¼ lÞ ¼ ln
jSDj

XjSDj
i¼1

XT
sDiR

�1
D XsDi

0
@

1
A

�1

;

¼ 1
ln

F GT GT

G H 0D�1;D�1

G 0D�1;D�1 H

0
BB@

1
CCA;

(C.4)

where

F ¼ r2b þ
2D� 1

D
r2e ;

Gpq ¼ �r2e ðp ¼ 1; :::;D� 1; q ¼ 1Þ;
Hpq ¼ r2eð1þ dpqÞ ðp ¼ 1; :::;D� 1; q ¼ 1; :::;D� 1Þ:

1. If q � 2 is the largest integer such that Llr¼ 0 for r ¼ 1; :::; q� 1, then the covariance of the
estimates of the fixed effects p̂2l; :::; p̂ql; ŝ1l; :::; ŝq�1l is identical to what it would be for
Ll1 ¼ ::: ¼ LlD�1 ¼ 0. Moreover, the covariance between the estimates of
p̂2l; :::; p̂ql; ŝ1l; :::; ŝq�1l and the estimates of p̂qþ1l; :::; p̂Dl; ŝql; :::; ŝD�1l is identical to what it
would be for Ll1 ¼ ::: ¼ LlD�1 ¼ 0.

Proof 1.We begin with the result for the case Ll1 ¼ ::: ¼ L1D�1 ¼ 0. We demonstrate this by
confirming

covðb̂ l; b̂ ljLl1; :::; LlD�1 ¼ 0; LlD ¼ lÞ�1covðb̂ l; b̂ ljLl1; :::; LlD�1 ¼ 0; LlD ¼ lÞ ¼ I2D�1:

By Lemma C.2 we know that

covðb̂ l; b̂ ljLl1; :::; LlD�1 ¼ 0; LlD ¼ lÞ�1 ¼ ln
A BT BT

B C E
B E C

0
@

1
A;

for

A ¼ Dr2e
r2eðr2e þ Dr2bÞ

;

B ¼ Dr2e
r2eðr2e þ Dr2bÞ

1
..
.

1

0
B@

1
CA;

C ¼ 1
r2eðr2e þ Dr2bÞ

r2e þ ðD� 1Þr2b �r2b ::: �r2b

�r2b r2e þ ðD� 1Þr2b . .
. ..

.

..

. . .
. . .

. �r2b
�r2b ::: �r2b r2e þ ðD� 1Þr2b

0
BBBBB@

1
CCCCCA;

E ¼ 1
D

r2e
r2eðr2e þ Dr2bÞ

1 ::: 1
..
. . .

. ..
.

1 ::: 1

0
B@

1
CA;
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with
dimðBÞ ¼ ðD� 1Þ � 1;
dimðCÞ ¼ ðD� 1Þ � ðD� 1Þ;
dimðEÞ ¼ ðD� 1Þ � ðD� 1Þ:

Thus, we must show

A BT BT

B C E
B E C

0
@

1
A F GT GT

G H 0D�1;D�1

G 0D�1;D�1 H

0
B@

1
CA ¼ I2D�1

or, on expanding,

AF þ 2BTG ¼ 1;

BGT þ CH ¼ ID�1;

BGT þ EH ¼ 0D�1;D�1;

BF þ CGþ EG ¼ 0D�1;1;

AGT þ BTH ¼ 01;D�1:

Now

AF þ 2BTG ¼ Dr2e
r2eðr2e þ Dr2bÞ

 !
r2b þ

2D� 1
D

r2e

� 	
þ 2

r2e
r2eðr2e þ Dr2bÞ

1

..

.

1

0
BB@

1
CCA

T

ð�r2eÞ
1

..

.

1

0
BB@

1
CCA;

¼ Dr2e
r2eðr2e þ Dr2bÞ

 !
r2b þ

2D� 1
D

r2e

� 	
� 2ðD� 1Þr2e

r2e
r2eðr2e þ Dr2bÞ

;

¼ 1;

BGT þ CH ¼ r2e
r2eðr2e þ Dr2bÞ

1
..
.

1

0
B@

1
CAð�r2eÞ

1
..
.

1

0
B@

1
CA

T

þ 1
r2eðr2e þ Dr2bÞ

r2e þ ðD� 1Þr2b �r2b ::: �r2b

�r2b r2e þ ðD� 1Þr2b . .
. ..

.

..

. . .
. . .

. �r2b
�r2b ::: �r2b r2e þ ðD� 1Þr2b

0
BBBBB@

1
CCCCCA

�ðr2eÞ

2 1 ::: 1

1 . .
. . .

. ..
.

..

. . .
. . .

.
1

1 ::: 1 2

0
BBBB@

1
CCCCA;

¼ � r4e
r2eðr2e þ Dr2bÞ

1 1 ::: 1

1 . .
. . .

. ..
.

..

. . .
. . .

.
1

1 ::: 1 1

0
BBBB@

1
CCCCA þ r2e

r2eðr2e þ Dr2bÞ

2r2e r2e ::: r2e

r2e 2r2e
. .
. ..

.

..

. . .
. . .

.
r2e

r2e ::: r2e 2r2e

0
BBBBB@

1
CCCCCA;

¼ ID�1;
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BGT þ EH ¼ r2e
r2eðr2e þ Dr2bÞ

1
..
.

1

0
B@

1
CAð�r2eÞ

1
..
.

1

0
B@

1
CA

T

þ 1
D

r2e
r2eðr2e þ Dr2bÞ

1 1 ::: 1

1 . .
. . .

. ..
.

..

. . .
. . .

.
1

1 ::: 1 1

0
BBBB@

1
CCCCAðr2eÞ

2 1 ::: 1

1 . .
. . .

. ..
.

..

. . .
. . .

.
1

1 ::: 1 2

0
BBBB@

1
CCCCA;

¼ � r4e
r2eðr2e þ Dr2bÞ

1 1 ::: 1

1 . .
. . .

. ..
.

..

. . .
. . .

.
1

1 ::: 1 1

0
BBBB@

1
CCCCA þ 1

D
r4e

r2eðr2e þ Dr2bÞ

D D ::: D

D . .
. . .

. ..
.

..

. . .
. . .

.
D

D . .
.

D D

0
BBBB@

1
CCCCA;

¼ 0D�1;D�1;

BF þ CGþ EG ¼ r2e
r2eðr2e þ Dr2bÞ

1
1
..
.

1

0
BBB@

1
CCCA r2b þ

2D� 1
D

r2e

� 	

þ 1
r2eðr2e þ Dr2bÞ

r2e þ ðD� 1Þr2b �r2b ::: �r2b

�r2b r2e þ ðD� 1Þr2b . .
. ..

.

..

. . .
. . .

. �r2b
�r2b ::: �r2b r2e þ ðD� 1Þr2b

0
BBBBB@

1
CCCCCA

�ðr2eÞ
1
1
..
.

1

0
BBB@

1
CCCAþ 1

D
r2e

r2eðr2e þ Dr2bÞ

1 1 ::: 1

1 . .
. . .

. ..
.

..

. . .
. . .

.
1

1 ::: 1 1

0
BBBB@

1
CCCCAð�r2eÞ

1
1
..
.

1

0
BBB@

1
CCCA;

¼ r2e
r2eðr2e þ Dr2bÞ

r2b þ
2D� 1

D
r2e

� 	 1
1
..
.

1

0
BBB@

1
CCCA � r2e

r2eðr2e þ Dr2bÞ
ðr2e þ r2bÞ

1
1
..
.

1

0
BBB@

1
CCCA

� 1
D

r4e
r2eðr2e þ Dr2bÞ

ðD� 1Þ
1
1
..
.

1

0
BBB@

1
CCCA;

¼ 0D�1;1;
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AGT þ BTH ¼ Dr2e
r2eðr2e þ Dr2bÞ

( )
ð�r2eÞ

1
1
..
.

1

0
BBB@

1
CCCA

T

þ r2e
r2eðr2e þ Dr2bÞ

( ) 1
1
..
.

1

0
BBB@

1
CCCA

T

ðr2eÞ

2 1 ::: 1

1 . .
. . .

. ..
.

..

. . .
. . .

.
1

1 ::: 1 2

0
BBBB@

1
CCCCA;

¼ � Dr4e
r2eðr2e þ Dr2bÞ

1
1
..
.

1

0
BBB@

1
CCCA

T

þ r4e
r2eðr2e þ Dr2bÞ

D

1
1
..
.

1

0
BBB@

1
CCCA

T

;

¼ 01;D�1;

as required. Thus, the proposed matrix is indeed covðb̂ l; b̂ ljLl1; :::; LlD�1 ¼ 0; LlD ¼ lÞ.
2. For the next part of the theorem, we re-order our vector of fixed effects such that

b ¼ ðl0; p2; s1; p3; s2; :::; pD; sD�1ÞT
and thus the ordering of the columns of the Xsri is now

Xsri ¼ 1r P2r T1sri P3r T2sri ::: PDr TD�1sri

� �
:

We proceed by induction over the number of stages completed l for general D. Now, we
assume that at the lth interim analysis, the statement of the theorem is true. Now, the covariance
at this lth analysis is

covðb̂l; b̂ ljLl1 ¼ ::: ¼ Llq�1 ¼ 0; Llq; :::; LlDÞ ¼
XD
r¼q

Lr n
jSr j
XjSr j
i¼1

XT
sriR

�1
r Xsri

0
@

1
A

�1

¼ A�1:

It is this specifically that we assume follows the required condition. Additionally, we assume that
this covariance matrix can be computed; that is, that A is invertible. We show that if we conduct
another stage of the trial with t treatments remaining, 2 � t � q, then the new covariance matrix

covðb̂ lþ1; b̂ lþ1jLlþ11; :::; Llþ1DÞ ¼ Aþ n
jSt j
XjSt j
i¼1

XT
stiR

�1
t Xsti

0
@

1
A�1

¼ Aþ Bð Þ�1

has the required property for p̂2l; :::; p̂tl; ŝ1l; :::; ŝt�1l as well as for p̂2l; :::; p̂tl; ŝ1l; :::; ŝt�1l and
p̂tþ1l; :::; p̂Dl; ŝtl; :::; ŝD�1l. Let

Tl ¼ ðl̂0l; p̂2l; ŝ1l; :::; p̂tl; ŝt�1lÞT;
Tl

0 ¼ ðp̂tþ1l; ŝtl; :::; p̂Dl; ŝD�1lÞT;
Wl ¼ ðp̂2l; ŝ1l; :::; p̂tl; ŝt�1lÞT:

Denote dimðTlÞ ¼ jTlj and similarly for Tl
0 and W l.

By our assumptions, we can write

A�1 ¼ A�1
TlTl

A�1
TlTl0

A�1
Tl 0Tl

A�1
Tl0Tl0

 !
;

Where, for example, A�1
TlTl

¼ covðTl;TljLl1; :::; LlDÞ and with A�1
TlTl

and A�1
Tl0Tl

¼ ðA�1
TlTl0Þ

T hold-
ing the required conditions for the fixed effects. Finally, as part of our inductive hypothesis we
also assume that detðA�1

TlTl
Þ>0.
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With these definitions, our aim can then be stated to prove that

covðWlþ1;W lþ1jLlþ11; :::; Llþ1DÞ ¼ l
lþ 1

A�1
W lWl

;

that is, that the covariance between the fixed effects p̂2l; :::; p̂tl and ŝ1l; :::; ŝt�1l is l=ðlþ 1Þ that of
its form at interim analysis l and similarly that

covðWlþ1
0;Wlþ1jLlþ11; :::; Llþ1DÞ ¼ l

lþ 1
A�1
Wl0Wl

:

For brevity, from here we will write

covðb̂ l; b̂ljLl1; :::; LlDÞ ¼ covðb̂ l; b̂ lÞ
and similarly for Tl;Tl

0, and W l for any l.
We use the following identity, which requires only the invertibility of A to be valid

(Henderson and Searle, 1981):

ðAþ UCVÞ�1 ¼ A�1 I � UCVA�1ðI þ UCVA�1Þ�1
� �

:

Note that we can write

B ¼ BTlþ1Tlþ1 0
0 0

� 	
¼ IjTlþ1j

0

� 	
BTlþ1Tlþ1

IjTlþ1j 0
� � ¼ UCV;

because our general form for
XjSt j
i¼1

XT
stiR

�1
t Xsti is only non-zero in a jTlj � jTlj block in the top left-

hand corner by Lemma C.2. Therefore, provided that A is invertible, we can always invert Aþ B
to find the covariance matrix at the following interim analysis. Moreover, we have

BA�1 ¼ BTlþ1Tlþ1 0
0 0

� 	
A�1
TlTl

A�1
TlTl0

A�1
Tl0Tl

A�1
Tl0Tl0

 !
;

¼ BTlþ1Tlþ1A
�1
TlTl

BTlþ1Tlþ1A
�1
TlTl0

0 0

� 	
;

and

I2D�1 þ BA�1 ¼ BTlþ1Tlþ1A
�1
TlTl

þ IjTlj BTlþ1Tlþ1A
�1
TlTl0

0 IjTl
0 j

 !
:

Now we need the formula (Henderson and Searle, 1981)

M ¼ E F

G H

 !
;

) M�1 ¼ ðE� FH�1GÞ�1 �E�1FðH � GE�1FÞ�1

�H�1GðE� FH�1GÞ�1 ðH � GE�1FÞ�1

 !
;

which implies

ðI2D�1 þ BA�1Þ�1 ¼ ðBTlþ1Tlþ1A
�1
TlTl

þ IjTljÞ�1 �ðBTlþ1Tlþ1A
�1
TlTl

þ IjTljÞ�1BTlþ1Tlþ1A
�1
TlTl0

0 IjTl
0 j

 !
:

Note that to use this block matrix inversion formula we require BTlþ1Tlþ1A
�1
TlTl

þ IjTlj to be
invertible. However, by the previous result of this theorem, only the variance of the intercept
term in the form for A�1

TlTl
is dependent upon the value of t, so we have that
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BTlþ1Tlþ1A
�1
TlTl

¼ 1
l

V1 0
V2 IjTlj�1

� 	
¼ 1

l
V1 0
V2 IjWl j

� 	
;

for some V1;V2; dimðV1Þ ¼ 1� 1; dimðV2Þ ¼ jW lj � 1. Now, by Lemma C.3, detðB�1
Tlþ1Tlþ1

Þ>0,

which gives detðBTlþ1Tlþ1Þ ¼ fdetðB�1
Tlþ1Tlþ1

Þg�1
>0. By assumption, detðA�1

TlTl
Þ>0, and thus

detðBTlþ1Tlþ1A
�1
TlTl

Þ ¼ detðBTlþ1Tlþ1ÞdetðA�1
TlTl

Þ ¼ 1
l

� 	jW lj
V1>0;

) V1>0:

Therefore,

BTlþ1Tlþ1A
�1
TlTl

þ IjTl j ¼
1
l

V1 þ l 0
V2 ð1þ lÞIjWlj

� 	
;

) detðBTlþ1Tlþ1A
�1
TlTl

þ IjTljÞ>0;

and BTlþ1Tlþ1A
�1
TlTl

þ IjTl j is therefore invertible as required.
Now

covðb̂ lþ1; b̂ lþ1Þ ¼ A�1
TlTl

A�1
TlTl0

A�1
Tl 0Tl

A�1
Tl 0Tl0

 !

� I2D�1 � BTlþ1Tlþ1A
�1
TlTl

BTlþ1Tlþ1A
�1
TlTl0

0 0

� 	


ðBTlþ1Tlþ1A
�1
TlTl

þ IjTl jÞ�1 �ðBTlþ1Tlþ1A
�1
TlTl

þ IjTl jÞ�1BTlþ1Tlþ1A
�1
TlTl 0

0 IjTl
0 j

 !
:

We thus have

covðTlþ1;Tlþ1Þ ¼ A�1
TlTl

fIjTlj � BTlþ1Tlþ1A
�1
TlTl

ðBTlþ1Tlþ1A
�1
TlTl

þ IjTl jÞ�1g;
¼ A�1

TlTl
½IjTlj � fIjTl j þ ðBTlþ1Tlþ1A

�1
TlTl

Þ�1g�1�
covðTlþ1

0;Tlþ1Þ ¼ A�1
Tl0Tl

fIjTlj � BTlþ1Tlþ1A
�1
TlTl

ðBTlþ1Tlþ1A
�1
TlTl

þ IjTljÞ�1g;
¼ A�1

Tl0Tl
½IjTl j � fIjTlj þ ðBTlþ1Tlþ1A

�1
TlTl

Þ�1g�1�;
by the identity DC�1ðDC�1 þ IÞ�1 ¼ ðI þ ðDC�1Þ�1Þ�1 (Henderson and Searle, 1981), which we
can use as BTlþ1Tlþ1A

�1
TlTl

þ IjTlj is invertible from earlier. Then

covðTlþ1;Tlþ1Þ ¼ A�1
TlTl

IjTlj � IjTlj � 1
l

V1 0
V2 IjWlj

� 	
 �1
" #�1!

;

0
@

¼A�1
TlTl

IjTlj � IjTl j � l
V1 0
V2 IjW lj

� 	�1
( )�1#

;

2
4

¼A�1
TlTl

IjTlj � IjTlj � l
V�1
1 0

�IjW ljV2V�1
1 I�1

jWl j

 !( )�1#
;

2
4
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¼A�1
TlTl

IjTlj �
1þ lV�1

1 0
�IjWljV2V�1

1 ð1þ lÞI�1
jWl j

 !�1
8<
:

9=
;;

¼ A�1
TlTl

� IjTlj �
ð1þ lV�1

1 Þ�1 0
�ð1þ lÞ�1IjWl j � IjW ljV2V�1

1 ð1þ lV�1
1 Þ�1 ð1þ lÞ�1IjWl j

 !( )
;

¼ A�1
TlTl

IjTl j �
ð1þ lV�1

1 Þ�1 0
ð1þ lÞ�1IjWljV2V�1

1 ð1þ lV�1
1 Þ�1 ð1þ lÞ�1IjWlj

 !( )
;

¼ A�1
TlTl

1� ð1þ lV�1
1 Þ�1 0

ð1þ lÞ�1IjWljV2V�1
1 ð1þ lV�1

1 Þ�1 IjW ljð1þ lÞ�1IjW lj

 !
:

Now

detfcovðTlþ1;Tlþ1jLlþ11; :::; Llþ1DÞg ¼ detðA�1
TlTl

Þdetf1� ð1þ lV�1
1 Þ�1g � detfIjWlj�ð1þlÞ�1IjWl j

g > 0;

thus detðA�1
Tlþ1Tlþ1

Þ>0 as required, and

covðW lþ1;Wlþ1Þ ¼ A�1
WlWl

fIjWl j � ð1þ lÞ�1IjWljg;
¼ A�1

WlW l

l
lþ 1

IjWlj


 
;

¼ l
lþ 1

A�1
W lWl

:

Similarly,

covðW lþ1
0;W lþ1Þ ¼ A�1

W0lWl
fIjWl j � ð1þ lÞ�1IjWljg;

¼ A�1
W0lWl

l
lþ 1

IjW lj


 
;

¼ l
lþ 1

A�1
W0lW l

:

Thus, the covariance of the fixed effects at the ðlþ 1Þth analysis has the desired property.
Now, as the base case, consider having completed one stage of the trial and proceeding to

complete another with any number of treatments t ¼ 2; :::;D remaining. Then, in this instance,

A ¼ n
jSDj

XjSDj
i¼1

XT
sDiR

�1
D XsDi :

By the previous result of this theorem, this is indeed invertible and has the desired property;
moreover, by Lemma C.3, detðA�1

TlTl
Þ>0. The proof is then complete.

Lemma C.3. Consider the matrix from part (1) of Theorem C.1, the case
Ll1 ¼ ::: ¼ LlD�1 ¼ 0; Lld ¼ l

ln
jSDj

XjSDj
i¼1

XT
sDiR

�1
D XsDi

0
@

1
A�1

:

Now consider restricting to the columns and rows corresponding to

Tl ¼ ðl̂0l; p̂2l; p̂3l; :::; p̂tl; ŝ1l; ŝ2l; :::; ŝt�1lÞT;
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for some t ¼ 2; :::;D. The determinant of the matrix covðTl;TljLl1 ¼ ::: ¼ LlD�1 ¼ 0; LlD ¼ lÞ is
strictly positive for any t.

Proof. We have, by part (1) of Theorem C.1

covðTl;TljLl1 ¼ ::: ¼ LlD�1 ¼ 0; LlD ¼ lÞ ¼ 1
ln

r2b þ
2D� 1

D
r2e MT

M N

0
@

1
A;

for

M ¼
�r2e
..
.

�r2e

0
BB@

1
CCA;

N ¼ r2e
P 0
0 P

� 	
;

P ¼

2 1 ::: 1

1 . .
. . .

. ..
.

..

. . .
. . .

.
1

1 ::: 1 2

0
BBBB@

1
CCCCA;

dimðMÞ ¼ ð2t � 2Þ � 1;
dimðNÞ ¼ 2ðt � 1Þ � 2ðt � 1Þ;
dimðPÞ ¼ ðt � 1Þ � ðt � 1Þ:

Then

det
1
ln

r2b þ
2D� 1

D
r2e MT

M N

0
@

1
A

8<
:

9=
; ¼ 1

ln

� 	2t�1

det r2b þ
2D� 1

D
r2e MT

M N

0
@

1
A

0
@

1
A;

¼ 1
ln

� 	2t�1

detðNÞdet r2b þ
2D� 1

D
r2e

� 	
�MTN�1M


 
:

Now

N�1 ¼ 1
r2e

P�1 0

0 P�1

 !
;

detðNÞ ¼ r4ðt�1Þ
e detðPÞ2:

We are therefore left to find P�1. We have PQ ¼ ID�1 for

Q ¼ 1
t

t � 1 �1 ::: �1

�1 . .
. . .

. ..
.

..

. . .
. . .

. �1
�1 ::: �1 t � 1

0
BBBB@

1
CCCCA:
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Thus, P�1 ¼ Q, and

det
1
ln

r2b þ
2D� 1

D
r2e MT

M N

0
@

1
A

8<
:

9=
; ¼ 1

ln

� �2t�1det r2b þ
2D� 1

D
r2e MT

M N

0
@

1
A

0
@

1
A;

¼ 1
ln

� �2t�1detðNÞdet r2b þ
2D� 1

D
r2e

� 	
�MTN�1M


 
;

¼ 1
ln

� �2t�1r4ðt�1Þ
e detðPÞ2

�det r2b þ
2D� 1

D
r2e

� 	
� r2e

�1
..
.

�1

0
B@

1
CA

T

Q 0
0 Q

� 	 �1
..
.

�1

0
B@

1
CA

8>><
>>:

9>>=
>>;:

This will be strictly positive provided that

det r2b þ
2D� 1

D
r2e

� 	
� r2e

�1
..
.

�1

0
B@

1
CA

T

Q 0
0 Q

� 	 �1
..
.

�1

0
B@

1
CA

8>><
>>:

9>>=
>>;>0:

But

det r2b þ
2D� 1

D
r2e

� 	
� r2e

�1
..
.

�1

0
B@

1
CA

T

Q 0
0 Q

� 	 �1
..
.

�1

0
B@

1
CA

8>><
>>:

9>>=
>>;

¼ det r2b þ
2D� 1

D
r2e

� 	
� r2e

�1=t

..

.

�1=t

0
B@

1
CA

T �1
..
.

�1

0
B@

1
CA

8>><
>>:

9>>=
>>;;

¼ det r2b þ
2D� 1

D
r2e

� 	
� r2e

2t � 2
t

� 	( )
;

¼ r2b þ r2e
2
t
� 1
D

� 	
>0;

because t � D. Thus, we have the required result.

Appendix D: Programs

D.1. Availability

The code described below is available to download from https://github.com/mjg211/article_code.

D.2. R

The R package groupSeqCrossover allows the determination and exploration of group sequential
power family crossover trial designs. The function gsco is used to determine the design, taking
inputs for the value of L, a, b, d, r2e , D, and sequence type (“latin” or “williams”). The function
plot can then be used through S3 methods to plot power curves, the expected sample size, and
the expected number of observations for varying true treatment effects. Moreover, the function
simulategsco can be used to simulate group sequential crossover trials in order to assess their
operating characteristics. This is especially useful in the case of small sample size designs. The
code below, for example, identifies the discussed design for D¼ 0 and then plots the expected
sample size curve

# Identify the design
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Delta.0 <- gsco(Delta ¼ 0)
# Plot E(N j tau_1 ¼… ¼ tau_(D-1)¼ theta)
plot(Delta.0)

Similarly, the following code would allow the determination of the familywise error rate under
the global null hypothesis (when analyzing using maximum likelihood estimation and using
quantile substitution on the identified boundaries) of the design discussed in Appendix B:

simulate.fwer <- simulategsco(REML¼ F, adjust¼T)

D.3. Matlab

In order to ease the understanding of the forms of equations (C.1) through (C.4), Matlab code
employing symbolic algebra to return their forms is available. The user details a value for D, and
four matrices are then returned. For example, consider the case D¼ 4

� [eqC_1, eqC_2, eqC_3, eqC_4]¼ groupSeqCrossoverMatrices(4);
eqC_2 contains the Rr for r¼ 2, 3, 4. Specifically
� eqC_2
eqC_2¼ [b̂ 2þ ê 2, b̂ 2, b̂ 2, b̂ 2]
[b̂ 2, b̂ 2þ ê 2, b̂ 2, b̂ 2]
[b̂ 2, b̂ 2, b̂ 2þ ê 2, b̂ 2]
[b̂ 2, b̂ 2, b̂ 2, b̂ 2þ ê 2]
[b̂ 2þ ê 2, b̂ 2, b̂ 2, 0]
[b̂ 2, b̂ 2þ ê 2, b̂ 2, 0]
[b̂ 2, b̂ 2, b̂ 2þ ê 2, 0]
[0, 0, 0, 0]
[b̂ 2þ ê 2, b̂ 2, 0, 0]
[b̂ 2, b̂ 2þ ê 2, 0, 0]
[0, 0, 0, 0]
[0, 0, 0, 0]
From this we observe

R2 ¼ r2e þ r2b r2b
r2b r2e þ r2b

� 	
;

R3 ¼
r2e þ r2b r2b r2b

r2b r2e þ r2b r2b
r2b r2b r2e þ r2b

0
@

1
A;

R4 ¼
r2e þ r2b r2b r2b r2b

r2b r2e þ r2b r2b r2b
r2b r2b r2e þ r2b r2b
r2b r2b r2b r2e þ r2b

0
BBB@

1
CCCA:

Note that we have to remove the rows and columns of zeroes from the Rr for r<D, and we
use b and e for rb and re respectively.

Similarly, eqC_1 contains the forms for R�1
r for r¼ 2, 3, 4.

eqC_3 and eqC_4 correspond to the case b ¼ ðl0; p2; :::; pD; s1; :::; sD�1ÞT. eqC_3 contains

XjSr j
i¼1

n
jSrjX

T
sriR

�1
r Xsri ðr ¼ 2; 3; 4Þ:

Precisely, the first 2D� 1 rows correspond to the case r¼ 4, the next 2D� 1 to r¼ 3, and
so forth.

Finally, eqC_4 contains the matrix covðb̂ l; b̂ ljx ¼ ðl; :::; lÞT;wÞ.
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