813 research outputs found
Magnetic structure of the crust
The bibuniqueness aspect of geophysical interpretation must be constrained by geological insight to limit the range of theoretically possible models. An additional step in depth understanding of the relationship between rock magnetization and geological circumstances on a grand scale is required. Views about crustal structure and the distribution of lithologies suggests a complex situation with lateral and vertical variability at all levels in the crust. Volcanic, plutonic, and metamorphic processes together with each of the observed anomalies. Important questions are addressed: (1) the location of the magnetic bottom; (2) whether the source is a discrete one or are certain parts of the crust cumulatively contributing to the overall magnetization; (3) if the anomaly to some recognizable surface expression is localized, how to arrive at a geologically realistic model incorporating magnetization contrasts which are realistic; (3) in the way the primary mineralogies are altered by metamorphism and the resulting magnetic contracts; (4) the effects of temperature and pressure on magnetization
Reflection spectra and magnetochemistry of iron oxides and natural surfaces
The magnetic properties and spectral characteristics of iron oxides are distinctive. Diagnostic features in reflectance spectra (0.5 to 2.4 micron) for alpha Fe2O3, gamma Fe2O3, and FeOOH include location of Fe3(+) absorption features, intensity ratios at various wavelengths, and the curve shape between 1.2 micron and 2.4 micron. The reflection spectrum of natural rock surfaces are seldom those of the bulk rock because of weathering effects. Coatings are found to be dominated by iron oxides and clay. A simple macroscopic model of rock spectra (based on concepts of stains and coatings) is considered adequate for interpretation of LANDSAT data. The magnetic properties of materials associated with specific spectral types and systematic changes in both spectra and magnetic properties are considered
Satellite and surface geophysical expression of anomalous crustal structure in Kentucky and Tennessee
An equivalent layer magnetization model is discussed. Inversion of long wavelength satellite magnetic anomaly data indicates a very magnetic source region centered in south central Kentucky. Refraction profiles suggest that the source of the gravity anomaly is a large mass of rock occupying much of the crustal thickness. The outline of the source delineated by gravity contours is also discernible in aeromagnetic anomaly patterns. The mafic plutonic complex, and several lines of evidence are consistent with a rift association. The body is, however, clearly related to the inferred position of the Grenville Front. It is bounded on the north by the fault zones of the 38th Parallel Lineament. It is suggested that such magnetization levels are achieved with magnetic mineralogies produced by normal oxidation and metamorphic processes and enhanced by viscous build-up, especially in mafic rocks of alkaline character
The Addition Spectrum of a Lateral Dot from Coulomb and Spin Blockade Spectroscopy
Transport measurements are presented on a class of electrostatically defined
lateral dots within a high mobility two dimensional electron gas (2DEG). The
new design allows Coulomb Blockade(CB) measurements to be performed on a single
lateral dot containing 0, 1 to over 50 electrons. The CB measurements are
enhanced by the spin polarized injection from and into 2DEG magnetic edge
states. This combines the measurement of charge with the measurement of spin
through spin blockade spectroscopy. The results of Coulomb and spin blockade
spectroscopy for first 45 electrons enable us to construct the addition
spectrum of a lateral device. We also demonstrate that a lateral dot containing
a single electron is an effective local probe of a 2DEG edge.Comment: 4 pages, 4 figures submitted to Physical Review
The Moho as a magnetic boundary
Magnetic data are presented for mantle derived rocks: peridtites from St. Pauls rocks, dunite xenoliths from the kaupulehu flow in Hawaii, as well as peridolite, dunite and eclogite xenoliths from Roberts Victor, Dutoitspan, Kilbourne Hole, and San Carlos diatremes. The rocks are paramagnetic or very weakly ferromagnetic at room temperature. Saturation magnetization values range from 0.013 emu/gm to less than 0.001 emu/gm. A review of pertinent literature dealing with analysis of the minerals in mantle xenoliths provides evidence that metals and primary Fe3O4 are absent, and that complex CR, Mg, Al, and Fe spinels dominate the oxide mineralogy. All of the available evidence supports the magnetic results, indicating that the seismic MOHO is a magnetic boundary
The visibility study of S-T Landau-Zener-St\"uckelberg oscillations without applied initialization
Probabilities deduced from quantum information studies are usually based on
averaging many identical experiments separated by an initialization step. Such
initialization steps become experimentally more challenging to implement as the
complexity of quantum circuits increases. To better understand the consequences
of imperfect initialization on the deduced probabilities, we study the effect
of not initializing the system between measurements. For this we utilize
Landau-Zener-St\"uckelberg oscillations in a double quantum dot circuit.
Experimental results are successfully compared to theoretical simulations.Comment: 8 pages, 5 figure
Enhanced charge detection of spin qubit readout via an intermediate state
We employ an intermediate excited charge state of a lateral quantum dot
device to increase the charge detection contrast during the qubit state readout
procedure, allowing us to increase the visibility of coherent qubit
oscillations. This approach amplifies the coherent oscillation magnitude but
has no effect on the detector noise resulting in an increase in the signal to
noise ratio. In this letter we apply this scheme to demonstrate a significant
enhancement of the fringe contrast of coherent Landau-Zener-Stuckleberg
oscillations between singlet S and triplet T+ two-spin states.Comment: 3 pages, 3 figure
Composite fermions in periodic and random antidot lattices
The longitudinal and Hall magnetoresistance of random and periodic arrays of artificial scatterers, imposed on a high-mobility two-dimensional electron gas, were investigated in the vicinity of Landau level filling factor ν=1/2. In periodic arrays, commensurability effects between the period of the antidot array and the cyclotron radius of composite fermions are observed. In addition, the Hall resistance shows a deviation from the anticipated linear dependence, reminiscent of quenching around zero magnetic field. Both effects are absent for random antidot lattices. The relative amplitude of the geometric resonances for opposite signs of the effective magnetic field and its dependence on illumination illustrate enhanced soft wall effects for composite fermions
Optical readout of charge and spin in a self-assembled quantum dot in a strong magnetic field
We present a theory and experiment demonstrating optical readout of charge
and spin in a single InAs/GaAs self-assembled quantum dot. By applying a
magnetic field we create the filling factor 2 quantum Hall singlet phase of the
charged exciton. Increasing or decreasing the magnetic field leads to
electronic spin-flip transitions and increasing spin polarization. The
increasing total spin of electrons appears as a manifold of closely spaced
emission lines, while spin flips appear as discontinuities of emission lines.
The number of multiplets and discontinuities measures the number of carriers
and their spin. We present a complete analysis of the emission spectrum of a
single quantum dot with N=4 electrons and a single hole, calculated and
measured in magnetic fields up to 23 Tesla.Comment: 9 pages, 3 figures, submitted to Europhysics Letter
Correlated Photon-Pair Emission from a Charged Single Quantum Dot
The optical creation and recombination of charged biexciton and trion
complexes in an (In,Ga)As/GaAs quantum dot is investigated by
micro-photoluminescence spectroscopy. Photon cross-correlation measurements
demonstrate the temporally correlated decay of charged biexciton and trion
states. Our calculations provide strong evidence for radiative decay from the
excited trion state which allows for a deeper insight into the spin
configurations and their dynamics in these systems.Comment: 5 pages, 3 figures, submitted for publicatio
- …
