18,476 research outputs found

    Charge migration mechanisms in the DNA at finite temperature revisited; from quasi-ballistic to subdiffusive transport

    Full text link
    Various charge migration mechanisms in the DNA are studied within the framework of the Peyrard-Bishop-Holstein model which has been widely used to address charge dynamics in this macromolecule. To analyze these mechanisms we consider characteristic size and time scales of the fluctuations of the electronic and vibrational subsystems. It is shown, in particular, that due to substantial differences in these timescales polaron formation is unlikely within a broad range of temperatures. We demonstrate that at low temperatures electronic transport can be quasi-ballistic. For high temperatures, we propose an alternative to polaronic charge migration mechanism: the fluctuation-assisted one, in which the electron dynamics is governed by relatively slow fluctuations of the vibrational subsystem. We argue also that the discussed methods and mechanisms can be relevant for other organic macromolecular systems, such as conjugated polymers and molecular aggregates

    Dual interacting cosmologies and late accelerated expansion

    Get PDF
    In this paper we show that by considering a universe dominated by two interacting components a superaccelerated expansion can be obtained from a decelerated one by applying a dual transformation that leaves the Einstein's field equations invariant.Comment: 13 pages, 1 figura, version to match published articl

    Electronic excitation of H_2O by low-energy electron impact

    Get PDF
    Cross sections for electronic excitation of H_2O by low-energy electrons have been studied using the Schwinger multichannel method. Differential and integral cross sections for excitation of the (3a_1→3sa_1)^3A_1 dissociative state are reported for impact energies of 12, 15, and 20 eV. A comparison of the calculated integral cross sections with emission measurements for OH (A^2Σ^+) produced via dissociative electron-impact excitation of H_2O in this energy range is encouraging

    Studies of the photoionization cross sections of CH_4

    Get PDF
    We present cross sections and asymmetry parameters for photoionization of the 1t_2 orbital of CH_4 using static‐exchange continuum orbitals of CH^+_4 to represent the photoelectron wave function. The calculations are done in the fixed‐nuclei approximation at a single internuclear geometry. To approximate the near‐threshold behavior of these cross sections, we assumed that the photoelectron spectrum is a composite of three electronic bands associated with the Jahn–Teller components of the distorted ion. The resulting cross sections reproduce the sharp rise seen at threshold in the experimental data and are in good agreement with experiment at higher energy. The agreement between the calculated and measured photoelectron asymmetry parameters is, however, less satisfactory

    Numerical modeling of surface runoff and erosion due to moving rainstorms at the drainage basin scale

    Get PDF
    A physically-based distributed erosion model (MEFIDIS) was applied to evaluate the consequences of storm movement on runoff and erosion from the Alenquer basin in Portugal. Controlled soil flume laboratory experiments were also used to test the model. Nine synthetic circular storms were used, combining three storm diameters (0.5, 1 and 2 times the Alenquer basin's axial length) with three speeds of storm movement (0.5, 1 and 2 m/s); storm intensities were synthesized in order to maintain a constant rainfall depth of 50 mm. The model was applied to storms moving downstream as well as upstream along the basin's axis. In all tests, downstream-moving storms caused significantly higher peak runoff (56.5%) and net erosion (9.1%) than did upstream-moving storms. The consequences for peak runoff were amplified as the storm intensity increased. The hydrograph shapes were also different: for downstream-moving storms, runoff started later and the rising limb was steeper, whereas for upstream moving storms, runoff started early and the rising limb was less steep. Both laboratory and model simulations on the Alenquer basin showed that the direction of storm movement, especially in case of extreme rainfall events, significantly affected runoff and soil loss.http://www.sciencedirect.com/science/article/B6V6C-4K7WTYF-3/1/05f00859098982a6ae43cfee9cc48fe

    Constraints on Cold Dark Matter Accelerating Cosmologies and Cluster Formation

    Full text link
    We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles (Ωm=1\Omega_{m}=1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving BAO + CMB + SNe Ia data yields Ω~m=0.28±0.01{\tilde{\Omega}}_{m}= 0.28\pm 0.01 (1σ1\sigma) where Ω~m\tilde{{\Omega}}_{m} is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from large scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual Λ\LambdaCDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with Λ\LambdaCDM scenarios trough a more detailed analysis involving CMB, weak lensing, as well as the large scale structure.Comment: 12 pages, 3 figures, Accepted for publication by Physical Rev.
    corecore