919 research outputs found
Light-harvesting superstructures of green plant chloroplasts lacking photosystems
"This is the peer reviewed version of the following article: Belgio, E., Ungerer, P., and Ruban, A. V. (2015) Light-harvesting superstructures of green plant chloroplasts lacking photosystems. Plant Cell Environ, 38: 2035–2047. doi: 10.1111/pce.12528.which has been published in final form at https://dx.10.1111/pce.12528. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.This work was supported by TheLeverhulme Trust and BBSRC research grants to A.V.R
Banking union in historical perspective: the initiative of the European Commission in the 1960s-1970s
This article shows that planning for the organization of EU banking regulation and supervision did not just appear on the agenda in recent years with discussions over the creation of the eurozone banking union. It unveils a hitherto neglected initiative of the European Commission in the 1960s and early 1970s. Drawing on extensive archival work, this article explains that this initiative, however, rested on a number of different assumptions, and emerged in a much different context. It first explains that the Commission's initial project was not crisis-driven; that it articulated the link between monetary integration and banking regulation; and finally that it did not set out to move the supervisory framework to the supranational level, unlike present-day developments
Observational Constraints on Interstellar Grain Alignment
We present new multicolor photo-polarimetry of stars behind the Southern
Coalsack. Analyzed together with multiband polarization data from the
literature, probing the Chamaeleon I, Musca, rho Opiuchus, R CrA and Taurus
clouds, we show that the wavelength of maximum polarization (lambda_max) is
linearly correlated with the radiation environment of the grains. Using
Far-Infrared emission data, we show that the large scatter seen in previous
studies of lambda_max as a function of A_V is primarily due to line of sight
effects causing some A_V measurements to not be a good tracer of the extinction
(radiation field strength) seen by the grains being probed. The derived slopes
in lambda_max vs. A_V, for the individual clouds, are consistent with a common
value, while the zero intercepts scale with the average values of the ratios of
total-to-selective extinction (R_V) for the individual clouds. Within each
cloud we do not find direct correlations between lambda_max and R_V. The
positive slope in consistent with recent developments in theory and indicating
alignment driven by the radiation field. The present data cannot conclusively
differentiate between direct radiative torques and alignment driven by H_2
formation. However, the small values of lambda_max(A_V=0), seen in several
clouds, suggest a role for the latter, at least at the cloud surfaces. The
scatter in the lambda_max vs. A_V relation is found to be associated with the
characteristics of the embedded Young Stellar Objects (YSO) in the clouds. We
propose that this is partially due to locally increased plasma damping of the
grain rotation caused by X-rays from the YSOs.Comment: Accepted for publication in the Astrophysical Journa
Optimized intermolecular potential for nitriles based on Anisotropic United Atoms model
An extension of the Anisotropic United Atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al., J. Chem. Phys., 2000, 112, 5499]. Non-bonding Lennard-Jones intermolecular potential parameters are regressed for the carbon and nitrogen atoms of the nitrile group (–C≡N) from experimental vapor-liquid equilibrium data of acetonitrile. Gibbs Ensemble Monte Carlo simulations and experimental data agreement is very good for acetonitrile, and better than previous molecular potential proposed by Hloucha et al. [J. Chem. Phys., 2000, 113, 5401]. The transferability of the resulting potential is then successfully tested, without any further readjustment, to predict vapor-liquid phase equilibrium of propionitrile and n-butyronitrile
Finite temperature stability and dimensional crossover of exotic superfluidity in lattices
We investigate exotic paired states of spin-imbalanced Fermi gases in
anisotropic lattices, tuning the dimension between one and three. We calculate
the finite temperature phase diagram of the system using real-space dynamical
mean-field theory in combination with the quantum Monte Carlo method. We find
that regardless of the intermediate dimensions examined, the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state survives to reach about one third
of the BCS critical temperature of the spin-density balanced case. We show how
the gapless nature of the state found is reflected in the local spectral
function. While the FFLO state is found at a wide range of polarizations at low
temperatures across the dimensional crossover, with increasing temperature we
find out strongly dimensionality-dependent melting characteristics of shell
structures related to harmonic confinement. Moreover, we show that intermediate
dimension can help to stabilize an extremely uniform finite temperature FFLO
state despite the presence of harmonic confinement.Comment: 5 pages, 3 figure
Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria.
Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of sp. PCC 7002 and sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.T.L. was supported by BBSRC Research Grant BB/J016985/1 to C.W.M. D.J.L-S. was supported by the Environmental Services Association Education Trust. L.L.B was supported by a BBSRC Doctoral Training Grant (BB/F017464/1)
Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria.
Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of sp. PCC 7002 and sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.T.L. was supported by BBSRC Research Grant BB/J016985/1 to C.W.M. D.J.L-S. was supported by the Environmental Services Association Education Trust. L.L.B was supported by a BBSRC Doctoral Training Grant (BB/F017464/1)
Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications
© The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio
Fine motor difficulties: the need for advocating for the role of occupational therapy in schools
Background: Fine motor difficulties can impact on the academic, social and emotional development of a student. Aim: The aims of this paper are to: (i) investigate the need for support to students experiencing fine motor difficulties from the perspective of their classroom teachers, and (ii) report on the level of knowledge teachers have in regard to the role of occupational therapists in supporting students with fine motor difficulties. Methods: Fifteen teachers from a stratified random sample of public schools within two regions of Victoria, Australia, were interviewed in this qualitative, grounded theory investigation. Results: Results showed that the current level of support for students with fine motor difficulties is inadequate. Conclusion: Occupational therapists in Victoria need to advocate their role in developing the fine motor skills of students at both an organisational and an individual level in order to increase the access of students with fine motor difficulties to occupational therapy services. <br /
Recommended from our members
Simple model of adsorption on external surface of carbon nanotubes: a new analytical approach basing on molecular simulation data
Nitrogen adsorption on carbon nanotubes is wide- ly studied because nitrogen adsorption isotherm measurement is a standard method applied for porosity characterization. A further reason is that carbon nanotubes are potential adsorbents for separation of nitrogen from oxygen in air. The study presented here describes the results of GCMC simulations of nitrogen (three site model) adsorption on single and multi walled closed nanotubes. The results obtained are described by a new adsorption isotherm model proposed in this study. The model can be treated as the tube analogue of the GAB isotherm taking into account the lateral adsorbate-adsorbate interactions. We show that the model describes the simulated data satisfactorily. Next this new approach is applied for a description of experimental data measured on different commercially available (and characterized using HRTEM) carbon nanotubes. We show that generally a quite good fit is observed and therefore it is suggested that the observed mechanism of adsorption in the studied materials is mainly determined by adsorption on tubes separated at large distances, so the tubes behave almost independently
- …
