1,768 research outputs found

    The Heisenberg antiferromagnet on a triangular lattice: topological excitations

    Full text link
    We study the topological defects in the classical Heisenberg antiferromagnet in two dimensions on a triangular lattice (HAFT). While the topological analysis of the order parameter space indicates that the defects are of Z2Z_2 type, consideration of the energy leads us to a description of the low--energy stationary points of the action in terms of ±\pm vortices, as in the planar XY model. Starting with the continuum description of the HAFT, we show analytically that its partition function can be reduced to that of a 2--dimensional Coulomb gas with logarithmic interaction. Thus, at low temperatures, the correlation length is determined by the spinwaves, while at higher temperatures we expect a crossover to a Kosterlitz--Thouless type behaviour. The results of recent Monte Carlo calculations of the correlation length are consistent with such a crossover.Comment: 9 pages, revtex, preprint: ITP-UH 03/9

    Monte Carlo Simulation of the Heisenberg Antiferromagnet on a Triangular Lattice: Topological Excitations

    Full text link
    We have simulated the classical Heisenberg antiferromagnet on a triangular lattice using a local Monte Carlo algorithm. The behavior of the correlation length ξ\xi, the susceptibility at the ordering wavevector χ(Q)\chi(\bf Q), and the spin stiffness ρ\rho clearly reflects the existence of two temperature regimes -- a high temperature regime T>TthT > T_{th}, in which the disordering effect of vortices is dominant, and a low temperature regime T<TthT < T_{th}, where correlations are controlled by small amplitude spin fluctuations. As has previously been shown, in the last regime, the behavior of the above quantities agrees well with the predictions of a renormalization group treatment of the appropriate nonlinear sigma model. For T>TthT > T_{th}, a satisfactory fit of the data is achieved, if the temperature dependence of ξ\xi and χ(Q)\chi(\bf Q) is assumed to be of the form predicted by the Kosterlitz--Thouless theory. Surprisingly, the crossover between the two regimes appears to happen in a very narrow temperature interval around Tth0.28T_{th} \simeq 0.28.Comment: 13 pages, 8 Postscript figure

    Correlations in the Ising antiferromagnet on the anisotropic kagome lattice

    Full text link
    We study the correlation function of middle spins, i. e. of spins on intermediate sites between two adjacent parallel lattice axes, of the spatially anisotropic Ising antiferromagnet on the kagome lattice. It is given rigorously by a Toeplitz determinant. The large-distance behaviour of this correlation function is obtained by analytic methods. For shorter distances we evaluate the Toeplitz determinant numerically. The correlation function is found to vanish exactly on a line J_d(T) in the T-J (temperature vs. coupling constant) phase diagram. This disorder line divides the phase diagram into two regions. For J less than J_d(T) the correlations display the features of an unfrustrated two-dimensional Ising magnet, whereas for J greater than J_d(T) the correlations between the middle spins are seen to be strongly influenced by the short-range antiferromagnetic order that prevails among the spins of the adjacent lattice axes. While for J less than J_d(T) there is a region with ferrimagnetic long-range order, the model remains disordered for J greater than J_d(T) down to T=0.Comment: 26 pages, 9 figures, published versio

    From Tomonaga-Luttinger to Fermi liquid in transport through a tunneling barrier

    Full text link
    Finite length of a one channel wire results in crossover from a Tomonaga-Luttinger to Fermi liquid behavior with lowering energy scale. In condition that voltage drop (V)(V) mostly occurs across a tunnel barrier inside the wire we found coefficients of temperature/voltage expansion of low energy conductance as a function of constant of interaction, right and left traversal times. At higher voltage the finite length contribution exhibits oscillations related to both traversal times and becomes a slowly decaying correction to the scale-invariant V1/g1V^{1/g-1} dependence of the conductance.Comment: 12 pages of RevTex file and 1 PS file figur

    Anderson-localization versus delocalization of interacting fermions in one dimension

    Get PDF
    Using the density matrix renormalization group algorithm, we investigate the lattice model for spinless fermions in one dimension in the presence of a strong interaction and disorder. The phase sensitivity of the ground state energy is determined with high accuracy for systems up to a size of 60 lattice constants. This quantity is found to be log-normally distributed. The fluctuations grow algebraically with system size with a universal exponent of ~2/3 in the localized region of the phase diagram. Surprizingly, we find, for an attractive interaction, a delocalized phase of finite extension. The boundary of this delocalized phase is determined.Comment: 5 pages, 6 figures, revte

    Scaling behavior of impurities in mesoscopic Luttinger liquids

    Full text link
    Using a functional renormalization group we compute the flow of the renormalized impurity potential for a single impurity in a Luttinger liquid over the entire energy range - from the microscopic scale of a lattice-fermion model down to the low-energy limit. The non-perturbative method provides a complete real-space picture of the effective impurity potential. We confirm the universality of the open chain fixed point, but it turns out that very large systems (10^4-10^5 sites) are required to reach the fixed point for realistic choices of the impurity and interaction parameters.Comment: 4 pages, 4 figures include

    Persistent currents in mesoscopic rings: A numerical and renormalization group study

    Full text link
    The persistent current in a lattice model of a one-dimensional interacting electron system is systematically studied using a complex version of the density matrix renormalization group algorithm and the functional renormalization group method. We mainly focus on the situation where a single impurity is included in the ring penetrated by a magnetic flux. Due to the interplay of the electron-electron interaction and the impurity the persistent current in a system of N lattice sites vanishes faster then 1/N. Only for very large systems and large impurities our results are consistent with the bosonization prediction obtained for an effective field theory. The results from the density matrix renormalization group and the functional renormalization group agree well for interactions as large as the band width, even though as an approximation in the latter method the flow of the two-particle vertex is neglected. This confirms that the functional renormalization group method is a very powerful tool to investigate correlated electron systems. The method will become very useful for the theoretical description of the electronic properties of small conducting ring molecules.Comment: 9 pages, 8 figures include

    On the Dialectics of Global Governance in the Twenty-first Century : A Polanyian Double Movement?

    Get PDF
    Following decades of economic globalisation and market-oriented reforms across the world, Karl Polanyi’s double movement has been invoked not only to explain what is happening but also to give reasons for being hopeful about a different future. Some have suggested a pendulum model of history: a swing from markets to society leading, in the next phase, to a swing from society to markets, and so on. The double movement can also be understood dialectically as a description of an irreversible historical development following its own inner laws or schemes of development. Going beyond a thesis – antithesis – synthesis pattern, I maintain that conceptions and schemes drawn from dialectics, and especially dialectical critical realism, can provide better geo-historical hypotheses for explaining past changes and for building scenarios about possible future changes. I analyse political economy contradictions and tendencies, and focus on normative rationality, to assess substantial claims about rational tendential directionality of world history. I argue that democratic global Keynesianism would enable processes of decommodification and new syntheses concerning the market/social nexus. A learning process towards qualitatively higher levels of reflexivity can help develop global transformative agency. Existing contradictions can be resolved by means of rational collective actions and building more adequate common institutions. These collective actions are likely to involve new forms of political agency such as world political parties.Peer reviewe

    Quantum Monte Carlo simulation for the conductance of one-dimensional quantum spin systems

    Full text link
    Recently, the stochastic series expansion (SSE) has been proposed as a powerful MC-method, which allows simulations at low TT for quantum-spin systems. We show that the SSE allows to compute the magnetic conductance for various one-dimensional spin systems without further approximations. We consider various modifications of the anisotropic Heisenberg chain. We recover the Kane-Fisher scaling for one impurity in a Luttinger-liquid and study the influence of non-interacting leads for the conductance of an interacting system.Comment: 8 pages, 9 figure

    Electronic Spectral Functions for Quantum Hall Edge States

    Full text link
    We have evaluated wavevector-dependent electronic spectral functions for integer and fractional quantum Hall edge states using a chiral Luttinger liquid model. The spectral functions have a finite width and a complicated line shape because of the long-range of the Coulomb interaction. We discuss the possibility of probing these line shapes in vertical tunneling experiments.Comment: 4 pages, RevTex, two figures included, to appear as a Rapid Communication in PRB; we updated references which have recently appeared in print and were cited as preprints in our ealier submissio
    corecore