15,946 research outputs found
Fast-Light in a Photorefractive Crystal for Gravitational Wave Detection
We demonstrate superluminal light propagation using two frequency multiplexed
pump beams to produce a gain doublet in a photorefractive crystal of Ce:BaTiO3.
The two gain lines are obtained by two-wave mixing between a probe field and
two individual pump fields. The angular frequencies of the pumps are
symmetrically tuned from the frequency of the probe. The frequency difference
between the pumps corresponds to the separation of the two gain lines; as it
increases, the crystal gradually converts from normal dispersion without
detuning to an anomalously dispersive medium. The time advance is measured as
0.28 sec for a pulse propagating through a medium with a 2Hz gain separation,
compared to the same pulse propagating through empty space. We also demonstrate
directly anomalous dispersion profile using a modfied experimental
configuration. Finally, we discuss how anomalous dispersion produced this way
in a faster photorefractive crystal (such as SPS: Sn2P2S6) could be employed to
enhance the sensitivity-bandwidth product of a LIGO type gravitational wave
detector augmented by a White Light Cavity.Comment: 14 pages, 5 figure
The LeChatelier principle: The long and the short of it
Using ordinary calculus techniques, we investigate the conditions under which LeChatelier effects are signable for finite changes in parameter values. We show, for example, that the short run demand for a factor is always less responsive to price changes than the long run demand, provided that the factor of production and the fixed factor do not switch from being substitutes to being complements (or vice versa) over the relevant range of the price change. The absence of a sign change in the complementarity/substitutability relation holds under conditions that are considerably more general than supermodularity of the production function.postprin
NbSe3: Effect of Uniaxial Stress on the Threshold Field and Fermiology
We have measured the effect of uniaxial stress on the threshold field ET for
the motion of the upper CDW in NbSe3. ET exhibits a critical behavior, ET ~ (1
- e/ec)^g, wher e is the strain, and ec is about 2.6% and g ~ 1.2. This
ecpression remains valid over more than two decades of ET, up to the highest
fields of about 1.5keV/m. Neither g nor ec is very sensitive to the impurity
concentraction. The CDW transition temperature Tp decreases linearly with e at
a rate dTp/de = -10K/%, and it does not show any anomaly near ec. Shubnikov
de-Haas measurements show that the extremal area of the Fermi surface decreases
with increasing strain. The results suggest that there is an intimate
relationship between pinning of the upper CDW and the Fermiology of NbSe3.Comment: 4 pages, 5 figure
Automatic cell segmentation by adaptive thresholding (ACSAT) for large-scale calcium imaging datasets
Advances in calcium imaging have made it possible to record from an increasingly larger number of neurons simultaneously. Neuroscientists can now routinely image hundreds to thousands of individual neurons. An emerging technical challenge that parallels the advancement in imaging a large number of individual neurons is the processing of correspondingly large datasets. One important step is the identification of individual neurons. Traditional methods rely mainly on manual or semimanual inspection, which cannot be scaled for processing large datasets. To address this challenge, we focused on developing an automated segmentation method, which we refer to as automated cell segmentation by adaptive thresholding (ACSAT). ACSAT works with a time-collapsed image and includes an iterative procedure that automatically calculates global and local threshold values during successive iterations based on the distribution of image pixel intensities. Thus, the algorithm is capable of handling variations in morphological details and in fluorescence intensities in different calcium imaging datasets. In this paper, we demonstrate the utility of ACSAT by testing it on 500 simulated datasets, two wide-field hippocampus datasets, a wide-field striatum dataset, a wide-field cell culture dataset, and a two-photon hippocampus dataset. For the simulated datasets with truth, ACSAT achieved >80% recall and precision when the signal-to-noise ratio was no less than ∼24 dB.DP2 NS082126 - NINDS NIH HHSPublished versio
A complete framework for Web mining
With the rapid growing number of WWW users, hidden information becomes ever increasingly valuable. As a consequence of this phenomenon, mining Web data and analysing on-line users' behaviour and their on-line traversal pattern have emerged as a new area of research. Primarily based on the Web servers' log files, the main objective of traversal pattern mining is to discover the frequent patterns in users' browsing paths and behaviors. This paper presents a complete framework for Web mining, allowing users to pre-define physical constraints when analysing complex traversal patterns in order to improve the efficiency of algorithms and offer flexibility in producing the results
- …
