474 research outputs found

    Gigahertz repetition rate thermionic electron gun concept

    Get PDF
    We present a novel concept for the generation of gigahertz repetition rate high brightness electron bunches. A custom design 100 kV thermionic gun provides a continuous electron beam, with the current determined by the filament size and temperature. A 1 GHz rectangular RF cavity deflects the beam across a knife-edge, creating a pulsed beam. Adding a higher harmonic mode to this cavity results in a flattened magnetic field profile which increases the duty cycle to 30%. Finally, a compression cavity induces a negative longitudinal velocity-time chirp in a bunch, initiating ballistic compression. Adding a higher harmonic mode to this cavity increases the linearity of this chirp and thus decreases the final bunch length. Charged particle simulations show that with a 0.15 mm radius LaB6 filament held at 1760 K, this method can create 279 fs, 3.0 pC electron bunches with a radial rms core emittance of 0.089 mm mrad at a repetition rate of 1 GHz.Comment: 12 pages, 12 figure

    The demographics of neutron star - white dwarf mergers: rates, delay-time distributions and progenitors

    Full text link
    The mergers of neutron stars (NSs) and white dwarfs (WDs) could give rise to explosive transients, potentially observable with current and future transient surveys. However, the expected properties and distribution of such events is not well understood. Here we characterize the rates of such events, their delay time distribution, their progenitors and the distribution of their properties. We use binary populations synthesis models and consider a wide range of initial conditions and physical processes. In particular we consider different common-envelope evolution models and different NS natal kick distributions. We provide detailed predictions arising from each of the models considered. We find that the majority of NS-WD mergers are born in systems in which mass-transfer played an important role, and the WD formed before the NS. For the majority of the mergers the WDs have a carbon-oxygen composition (60-80%) and most of the rest are with oxygen-neon WDs. The rates of NS-WD mergers are in the range of 3-15% of the type Ia supernovae (SNe) rate. Their delay time distribution is very similar to that of type Ia SNe, but slightly biased towards earlier times. They typically explode in young 0.1-1Gyr environments, but have a tail distribution extending to long, Gyrs-timescales. Models including significant kicks give rise to relatively wide offset distribution extending to hundreds of kpcs. The demographic and physical properties of NS-WD mergers suggest they are likely to be peculiar type Ic-like SNe, mostly exploding in late type galaxies. Their overall properties could be related to a class of rapidly evolving SNe recently observed, while they are less likely to be related to the class of Ca-rich SNe.Comment: updated version: accepted for publication in A&

    Quantifying Resonant Structure in NGC 6946 from Two-dimensional Kinematics

    Full text link
    We study the two-dimensional kinematics of the H-alpha-emitting gas in the nearby barred Scd galaxy, NGC 6946, in order to determine the pattern speed of the primary m=2 perturbation mode. The pattern speed is a crucial parameter for constraining the internal dynamics, estimating the impact velocities of the gravitational perturbation at the resonance radii, and to set up an evolutionary scenario for NGC 6946. Our data allows us to derive the best fitting kinematic position angle and the geometry of the underlying gaseous disk, which we use to derive the pattern speed using the Tremaine-Weinberg method. We find a main pattern speed Omega_p=22 km/s/kpc, but our data clearly reveal the presence of an additional pattern speed Omega_p=47 km/s/kpc in a zone within 1.25 kpc of the nucleus. Using the epicyclic approximation, we deduce the location of the resonance radii and confirm that inside the outer Inner Lindblad Resonance radius of the main oval, a primary bar has formed rotating at more than twice the outer pattern speed. We further confirm that a nuclear bar has formed inside the Inner Lindblad Resonance radius of the primary bar, coinciding with the inner Inner Lindblad Resonance radius of the large-scale m=2 mode oval.Comment: Accepted for publication in ApJ Letter

    The Scope of Published Population Genetic Data for Indo-Pacific Marine Fauna and Future Research Opportunities in the Region

    Get PDF
    Marine biodiversity reaches its pinnacle in the tropical Indo-Pacific region, with high levels of both species richness and endemism, especially in coral reef habitats. While this pattern of biodiversity has been known to biogeographers for centuries, causal mechanisms remain enigmatic. Over the past 20 yrs, genetic markers have been employed by many researchers as a tool to elucidate patterns of biodiversity above and below the species level, as well as to make inferences about the underlying processes of diversification, demographic history, and dispersal. In a quantitative, comparative framework, these data can be synthesized to address questions about this bewildering diversity by treating species as “replicates.” However, the sheer size of the Indo-Pacific region means that the geographic and genetic scope of many species’ data sets are not complementary. Here, we describe data sets from 116 Indo-Pacific species (108 studies). With a mind to future synthetic investigations, we consider the strengths and omissions of currently published population genetic data for marine fauna of the Indo-Pacific region, as well as the geographic and taxonomic scope of the data, and suggest some ways forward for data collection and collation

    Neutron Star - White Dwarf Binaries: Probing Formation Pathways and Natal Kicks with LISA

    Full text link
    Neutron star-white dwarf (NS+WD) binaries offer a unique opportunity for studying NS-specific phenomena with gravitational waves. In this paper, we employ the binary population synthesis technique to study the Galactic population of NS+WDs with the future Laser Interferometer Space Antenna (LISA). We anticipate approximately O(102)\mathcal{O}(10^2) detectable NS+WDs by LISA, encompassing both circular and eccentric binaries formed via different pathways. Despite the challenge of distinguishing NS+WDs from more prevalent double white dwarfs in the LISA data (especially at frequencies below 2 mHz), we show that their eccentricity and chirp mass distributions may provide avenues to explore the NS natal kicks and common envelope evolution. Additionally, we investigate the spatial distribution of detectable NS+WDs relative to the Galactic plane and discuss prospects for identifying electromagnetic counterparts at radio wavelengths. Our results emphasise LISA's capability to detect and characterise NS+WDs and to offer insights into the properties of the underlying population. Our conclusions carry significant implications for shaping LISA data analysis strategies and future data interpretation.Comment: Submitted to MNRAS. Comments are welcom

    The RAB3-RIM Pathway Is Essential for the Release of Neuromodulators

    Get PDF
    Neurons secrete neuromodulators/neuropeptides from dense-core vesicles (DCVs) by a largely unknown mechanism. Persoon et al. identify RAB3 and RIM1/2 as essential factors. RAB3’s indispensable role is the first distinct feature of DCV secretion as compared to synaptic vesicle secretion
    • 

    corecore