59 research outputs found
Planet Discoverer Interferometer (PDI) I: a potential precursor to Terrestrial Planet Finder
We consider a possible precursor interferometer to Terrestrial Planet Finder. The precursor called Planet Discoverer Interferometer (PDI) would search for broadband 10 μm radiation from possible terrestrial planets orbiting stars out to a distance of 8-10pc and at an angular separation of at least 0.1 arcseconds. There are about 20 stars of types A,F,G and K around which an Earth-analog might be detected. PDI would be able to confirm such planets by seeing their orbital motion. PDI would also be able to observe 5 μm radiation from the more massive and younger gas-giant planets around stars up to distances ∼ 150 pc, separated from their star by more than 0.05 arc seconds. It would also see the re-radiated thermal radiation of Jupiter-like planets at temperatures above ∼130K. The device would be a 15m long truss with four SIRTF-like telescopes. It would need to be in a SIRTF-like Earth-trailing orbit, and would be radiatively cooled. A very preliminary design suggest that PDI could fit into the shroud of a Delta II rocket. Similar preliminary calculations suggest that the total lifetime cost of such a mission would be under $300M. Detailed studies of this concept are in process
The Galactic Exoplanet Survey Telescope (GEST)
The Galactic Exoplanet Survey Telescope (GEST) will observe a 2 square degree
field in the Galactic bulge to search for extra-solar planets using a
gravitational lensing technique. This gravitational lensing technique is the
only method employing currently available technology that can detect Earth-mass
planets at high signal-to-noise, and can measure the frequency of terrestrial
planets as a function of Galactic position. GEST's sensitivity extends down to
the mass of Mars, and it can detect hundreds of terrestrial planets with
semi-major axes ranging from 0.7 AU to infinity. GEST will be the first truly
comprehensive survey of the Galaxy for planets like those in our own Solar
System.Comment: 17 pages with 13 figures, to be published in Proc. SPIE vol 4854,
"Future EUV-UV and Visible Space Astrophysics Missions and Instrumentation
Telescope to Observe Planetary Systems (TOPS): a high throughput 1.2-m visible telescope with a small inner working angle
The Telescope to Observe Planetary Systems (TOPS) is a proposed space mission
to image in the visible (0.4-0.9 micron) planetary systems of nearby stars
simultaneously in 16 spectral bands (resolution R~20). For the ~10 most
favorable stars, it will have the sensitivity to discover 2 R_E rocky planets
within habitable zones and characterize their surfaces or atmospheres through
spectrophotometry. Many more massive planets and debris discs will be imaged
and characterized for the first time. With a 1.2m visible telescope, the
proposed mission achieves its power by exploiting the most efficient and robust
coronagraphic and wavefront control techniques. The Phase-Induced Amplitude
Apodization (PIAA) coronagraph used by TOPS allows planet detection at 2
lambda/d with nearly 100% throughput and preserves the telescope angular
resolution. An efficient focal plane wavefront sensing scheme accurately
measures wavefront aberrations which are fed back to the telescope active
primary mirror. Fine wavefront control is also performed independently in each
of 4 spectral channels, resulting in a system that is robust to wavefront
chromaticity.Comment: 12 pages, SPIE conference proceeding, May 2006, Orlando, Florid
Planet Discoverer Interferometer (PDI) I: a potential precursor to Terrestrial Planet Finder
We consider a possible precursor interferometer to Terrestrial Planet Finder. The precursor called Planet Discoverer Interferometer (PDI) would search for broadband 10 μm radiation from possible terrestrial planets orbiting stars out to a distance of 8-10pc and at an angular separation of at least 0.1 arcseconds. There are about 20 stars of types A,F,G and K around which an Earth-analog might be detected. PDI would be able to confirm such planets by seeing their orbital motion. PDI would also be able to observe 5 μm radiation from the more massive and younger gas-giant planets around stars up to distances ∼ 150 pc, separated from their star by more than 0.05 arc seconds. It would also see the re-radiated thermal radiation of Jupiter-like planets at temperatures above ∼130K. The device would be a 15m long truss with four SIRTF-like telescopes. It would need to be in a SIRTF-like Earth-trailing orbit, and would be radiatively cooled. A very preliminary design suggest that PDI could fit into the shroud of a Delta II rocket. Similar preliminary calculations suggest that the total lifetime cost of such a mission would be under $300M. Detailed studies of this concept are in process
TOPS: a small space telescope using phase induced-amplitude apodization (PIAA) to image rocky and giant exo-planets
The Telescope to Observe Planetary Systems (TOPS) is a proposed space mission to image planetary systems of nearby stars simultaneously in a few wide spectral bands covering the visible light (0.4-0.9 μm). It achieves its power by combining a high accuracy wavefront control system with a highly efficient Phase-Induced Amplitude Apodization (PIAA) coronagraph which provides strong suppression very close to the star (within 2 λ/D). The PIAA coronagraphic technique opens the possibility of imaging Earthlike planets in visible light with a smaller telescope than previously supposed. If sized at 1.2-m, TOPS would image and characterize many Jupiter-sized planets, and discover 2 RE rocky planets within habitable zones of the ≈10 most favorable stars. With a larger 2-m aperture, TOPS would have the sensitivity to reveal Earth-like planets in the habitable zone around ≈20 stars, and to characterize any found with low resolution spectroscopy. Unless the occurrence of Earth-like planets is very low (η⊕ <~ 0.2), a useful fraction of the TPF-C scientific program would be possible with aperture much smaller than the baselined 8 by 3.5m for TPF, with its more conventional coronagraph. An ongoing laboratory experiment has successfully demonstrated high contrast coronagraphic imaging within 2 λ/d with the PIAA coronagraph / focal plane wavefront sensing scheme envisioned for TOPS
Evaluating the spatial uncertainty of future land abandonment in a mountain valley (Vicdessos, Pyrenees-France) : insights form model parameterization and experiments
International audienceEuropean mountains are particularly sensitive to climatic disruptions and land use changes. The latter leads to high rates of natural reforestation over the last 50 years. Faced with the challenge of predicting possible impacts on ecosystem services, LUCC models offer new opportunities for land managers to adapt or mitigate their strategies. Assessing the spatial uncertainty of future LUCC is crucial for the defintion of sustainable land use strategies. However, the sources of uncertainty may differ, including the input parameters, the model itself, and the wide range of possible futures. The aim of this paper is to propose a method to assess the probability of occurrence of future LUCC that combines the inherent uncertainty of model parameterization and the ensemble uncertainty of the future based scenarios. For this purpose, we used the Land Change Modeler tool to simulate future LUCC on a study site located in the Pyrenees Mountains (France) and 2 scenarios illustratins 2 land use strategies. The model was parameterized with the same driving factors used for its calibration. The defintion of static vs. dynamic and quantitative vs. qualitative (discretized) driving factors, and their combination resulted in 4 parameterizations. The combination of model outcomes produced maps of spatial uncertainty of future LUCC. This work involves literature to future-based LUCC studies. It goes beyond the uncertainty of simulation models by integrating the unceertainty of the future to provide maps to help decision makers and land managers
- …