1,086 research outputs found
A New Superintegrable Hamiltonian
We identify a new superintegrable Hamiltonian in 3 degrees of freedom,
obtained as a reduction of pure Keplerian motion in 6 dimensions. The new
Hamiltonian is a generalization of the Keplerian one, and has the familiar 1/r
potential with three barrier terms preventing the particle crossing the
principal planes. In 3 degrees of freedom, there are 5 functionally independent
integrals of motion, and all bound, classical trajectories are closed and
strictly periodic. The generalisation of the Laplace-Runge-Lenz vector is
identified and shown to provide functionally independent isolating integrals.
They are quartic in the momenta and do not arise from separability of the
Hamilton-Jacobi equation. A formulation of the system in action-angle variables
is presented.Comment: 11 pages, 4 figures, submitted to The Journal of Mathematical Physic
Second order superintegrable systems in conformally flat spaces. IV. The classical 3D StÀckel transform and 3D classification theory
This article is one of a series that lays the groundwork for a structure and classification theory of second order superintegrable systems, both classical and quantum, in conformally flat spaces. In the first part of the article we study the StÀckel transform (or coupling constant metamorphosis) as an invertible mapping between classical superintegrable systems on different three-dimensional spaces. We show first that all superintegrable systems with nondegenerate potentials are multiseparable and then that each such system on any conformally flat space is StÀckel equivalent to a system on a constant curvature space. In the second part of the article we classify all the superintegrable systems that admit separation in generic coordinates. We find that there are eight families of these systems
Integrable and superintegrable systems with spin
A system of two particles with spin s=0 and s=1/2 respectively, moving in a
plane is considered. It is shown that such a system with a nontrivial
spin-orbit interaction can allow an 8 dimensional Lie algebra of first-order
integrals of motion. The Pauli equation is solved in this superintegrable case
and reduced to a system of ordinary differential equations when only one
first-order integral exists.Comment: 12 page
Families of classical subgroup separable superintegrable systems
We describe a method for determining a complete set of integrals for a
classical Hamiltonian that separates in orthogonal subgroup coordinates. As
examples, we use it to determine complete sets of integrals, polynomial in the
momenta, for some families of generalized oscillator and Kepler-Coulomb
systems, hence demonstrating their superintegrability. The latter generalizes
recent results of Verrier and Evans, and Rodriguez, Tempesta and Winternitz.
Another example is given of a superintegrable system on a non-conformally flat
space.Comment: 9 page
Exact Solvability of Superintegrable Systems
It is shown that all four superintegrable quantum systems on the Euclidean
plane possess the same underlying hidden algebra . The gauge-rotated
Hamiltonians, as well as their integrals of motion, once rewritten in
appropriate coordinates, preserve a flag of polynomials. This flag corresponds
to highest-weight finite-dimensional representations of the -algebra,
realized by first order differential operators.Comment: 14 pages, AMS LaTe
Third-order superintegrable systems separable in parabolic coordinates
In this paper, we investigate superintegrable systems which separate in
parabolic coordinates and admit a third-order integral of motion. We give the
corresponding determining equations and show that all such systems are
multi-separable and so admit two second-order integrals. The third-order
integral is their Lie or Poisson commutator. We discuss how this situation is
different from the Cartesian and polar cases where new potentials were
discovered which are not multi-separable and which are expressed in terms of
Painlev\'e transcendents or elliptic functions
- âŠ