41,561 research outputs found
Recommended from our members
The Emerging Role of Ten-Eleven Translocation 1 in Epigenetic Responses to Environmental Exposures.
Mounting evidence from epidemiological studies and animal models has linked exposures to environmental factors to changes in epigenetic markers, especially in DNA methylation. These epigenetic changes may lead to dysregulation of molecular processes and functions and mediate the impact of environmental exposures in complex diseases. However, detailed molecular events that result in epigenetic changes following exposures remain unclear. Here, we review the emerging evidence supporting a critical role of ten-eleven translocation 1 (TET1) in mediating these processes. Targeting TET1 and its associated pathways may have therapeutic potential in alleviating negative impacts of environmental exposures, preventing and treating exposure-related diseases
On the thermal conduction in tangled magnetic fields in clusters of galaxies
Thermal conduction in tangled magnetic fields is reduced because heat
conducting electrons must travel along the field lines longer distances between
hot and cold regions of space than if there were no fields. We consider the
case when the tangled magnetic field has a weak homogeneous component. We
examine two simple models for temperature in clusters of galaxies: a
time-independent model and a time-dependent one. We find that the actual value
of the effective thermal conductivity in tangled magnetic fields depends on how
it is defined for a particular astrophysical problem. Our final conclusion is
that the heat conduction never totally suppressed but is usually important in
the central regions of galaxy clusters, and therefore, it should not be
neglected.Comment: 16 pages, 4 figure
Interacting Multiple Model-Feedback Particle Filter for Stochastic Hybrid Systems
In this paper, a novel feedback control-based particle filter algorithm for
the continuous-time stochastic hybrid system estimation problem is presented.
This particle filter is referred to as the interacting multiple model-feedback
particle filter (IMM-FPF), and is based on the recently developed feedback
particle filter. The IMM-FPF is comprised of a series of parallel FPFs, one for
each discrete mode, and an exact filter recursion for the mode association
probability. The proposed IMM-FPF represents a generalization of the
Kalmanfilter based IMM algorithm to the general nonlinear filtering problem.
The remarkable conclusion of this paper is that the IMM-FPF algorithm retains
the innovation error-based feedback structure even for the nonlinear problem.
The interaction/merging process is also handled via a control-based approach.
The theoretical results are illustrated with the aid of a numerical example
problem for a maneuvering target tracking application
Structure of polydisperse inverse ferrofluids: Theory and computer simulation
By using theoretical analysis and molecular dynamics simulations, we
investigate the structure of colloidal crystals formed by nonmagnetic
microparticles (or magnetic holes) suspended in ferrofluids (called inverse
ferrofluids), by taking into account the effect of polydispersity in size of
the nonmagnetic microparticles. Such polydispersity often exists in real
situations. We obtain an analytical expression for the interaction energy of
monodisperse, bidisperse, and polydisperse inverse ferrofluids. Body-centered
tetragonal (bct) lattices are shown to possess the lowest energy when compared
with other sorts of lattices and thus serve as the ground state of the systems.
Also, the effect of microparticle size distributions (namely, polydispersity in
size) plays an important role in the formation of various kinds of structural
configurations. Thus, it seems possible to fabricate colloidal crystals by
choosing appropriate polydispersity in size.Comment: 22 pages, 8 figure
Throughput Optimization in High Speed Downlink Packet Access (HSDPA)
In this paper, we investigate throughput optimization
in High Speed Downlink Packet Access (HSDPA). Specifically,
we propose offline and online algorithms for adjusting
the Channel Quality Indicator (CQI) used by the network to
schedule data transmission. In the offline algorithm, a given
target BLER is achieved by adjusting CQI based on ACK/NAK
history. By sweeping through different target BLERs, we can
find the throughput optimal BLER offline. This algorithm could
be used not only to optimize throughput but also to enable fair
resource allocation among mobile users in HSDPA. In the online
algorithm, the CQI offset is adapted using an estimated short
term throughput gradient without specifying a target BLER. An
adaptive stepsize mechanism is proposed to track temporal variation
of the environment. We investigate convergence behavior
of both algorithms. Simulation results show that the proposed
offline algorithm can achieve the given target BLER with good
accuracy. Both algorithms yield up to 30% HSDPA throughput
improvement over that with 10% target BLER
- …
