10 research outputs found
Mechanisms of compressive deformation and failure of porous bulk metallic glasses
Bulk metallic glasses (BMGs) are a new class of engineering materials having strengths as high as 10 times that of conventional steels, but show no significant plastic strain at fracture. By introducing pores, their strain to failure has been shown to improve under uniaxial compression. In this work, three-dimensional finite element simulations of uniaxial compression are carried out on Pd-based porous BMGs having a wide range of pore volume fraction (1.9%-60%) with emphasis on understanding the underlying deformation and failure mechanisms. The resulting stress-strain curves agree reasonably well with existing experimental results. The simulations clearly bring out different failure mechanisms in low porosity BMGs and high porosity BMG foams. For low porosity BMGs (below 20%), the deformation and failure involves nucleation of shear bands around the pore diameter, linking of the shear bands with adjacent pores finally leading to initiation of ductile cracking within the shear bands. For high porosity BMG foams, the mechanism of deformation involves reduction in porosity of the material, self-contact of the pores, and their collapse on themselves causing densification of the material leading to apparent hardening in the stress strain behavior. The effect of pore geometry is also studied by considering ellipsoidal pores of volume fraction 3% and 11%. For ellipsoidal pores, the failure mechanisms are found to differ significantly when the orientation of the major axis of the pore vis-a-vis the loading axis is changed
Effect of fuel concentration and force on collective transport by a team of dynein motors
Motor proteins are essential components of intracellular transport inside eukaryotic cells. These protein molecules use chemical energy obtained from hydrolysis of ATP to produce mechanical forces required for transporting cargos inside cells, from one location to another, in a directed manner. Of these motors, cytoplasmic dynein is structurally more complex than other motor proteins involved in intracellular transport, as it shows force and fuel (ATP) concentration dependent step-size. Cytoplasmic dynein motors are known to work in a team during cargo transport and force generation. Here, we use a complete Monte-Carlo model of single dynein constrained by in vitro experiments, which includes the effect of both force and ATP on stepping as well as detachment of motors under force. We then use our complete Monte-Carlo model of single dynein motor to understand collective cargo transport by a team of dynein motors, such as dependence of cargo travel distance and velocity on applied force and fuel concentration. In our model, cargos pulled by a team of dynein motors do not detach rapidly under higher forces, confirming the experimental observation of longer persistence time of dynein team on microtubule under higher forces
Temperature-dependence of mode I fracture toughness of a bulk metallic glass
Within the temperature range over which the shear band (SB)-mediated plastic deformation is dominant, metallic glasses exhibit an intermediate temperature ductility minimum (ITDM), which occurs at about 65% of the glass transition temperature, T-g. This ITDM is associated with a small number of SBs, with each band carrying large amount of plastic strain, which in turn leads to their easy transition to shear cracks, eventually leading to fracture. Some MGs are known to exhibit high room temperature (RT) fracture toughness, which has been associated with SB-mediated crack-tip plasticity. Hence, it is expected that ITDM would also correspond to a minimum in toughness. In order to ascertain this, temperature-dependence of mode I fracture toughness, J(c), of a bulk metallic glass (BMG), Vitreloy 105, was investigated by recourse to 4-point bend testing of single edge notched specimens within 298 -475 K range, which corresponds to similar to 0.44 and 0.7T(g) of the tested BMG. Complementary finite element analyses were utilized to convert the critical load for fracture into J(c) Results confirm a minimum infc at similar to 0.67T(g), which is in agreement with the results of unnotched 3-point bend experiments on unnotched bars that show ITDM at 0.65T(g). These observations are rationalized with the aid of notch plastic deformation and post mortem fractographic characterizations and in terms of the influence of temperature on factors such as the number of shear bands, the barrier for their conversion into shear cracks, and hydrostatic stress gradients ahead of the notch tip. This study highlights the sensitive nature of BMGs' fracture toughness, even when they are nominally ductile, to temperature. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved