30 research outputs found

    Process modelling and feasibility study of sorption-enhanced methanol synthesis

    No full text
    Abstract A sorption-enhanced process for hydrogenation of CO₂ to methanol was designed and investigated by mathematical modelling and techno-economic analysis. The modelling methodology combined dynamic modelling of the cyclic reactor operation with pseudo-steady state modelling of the overall process. With continuous adsorption of water in the sorption-enhanced process, highly pure methanol (>99%) was produced without downstream distillation. The dynamic reactor cycle was designed and optimized to maximize the methanol production rate. The cycle and the process were modelled in two reactor configurations: adiabatic and isothermal. Under the default cost assumptions for the raw materials (CO₂ 50 €/t, hydrogen 3000 €/t) the adiabatic configuration was found more competitive in terms of the overall methanol production cost, at 1085 €/t compared to 1255 €/t for the isothermal case. The cost estimate for the adiabatic case was found comparable to a reference process representing conventional CO₂ hydrogenation to methanol (1089 €/t). In addition to the methanol process, the developed modeling method has potential in the design of other sorption-enhanced processes

    Modelling and cost estimation for conversion of green methanol to renewable liquid transport fuels via olefin oligomerisation

    No full text
    Abstract The ambitious CO₂ emission reduction targets for the transport sector set in the Paris Climate Agreement require low-carbon energy solutions that can be commissioned rapidly. The production of gasoline, kerosene, and diesel from renewable methanol using methanol-to-olefins (MTO) and Mobil’s Olefins to Gasoline and Distillate (MOGD) syntheses was investigated in this study via process simulation and economic analysis. The current work presents a process simulation model comprising liquid fuel production and heat integration. According to the economic analysis, the total cost of production was found to be 3409 €/tfuels (273 €/MWhLHV), corresponding to a renewable methanol price of 963 €/t (174 €/MWhLHV). The calculated fuel price is considerably higher than the current cost of fossil fuels and biofuel blending components. The price of renewable methanol, which is largely dictated by the cost of electrolytic hydrogen and renewable electricity, was found to be the most significant factor affecting the profitability of the MTO-MOGD plant. To reduce the price of renewable fuels and make them economically viable, it is recommended that the EU’s sustainable transport policies are enacted to allow flexible and practical solutions to reduce transport-related emissions within the member states
    corecore