8 research outputs found

    High-cooperativity nanofiber laser

    Get PDF
    Cavity-free efficient coupling between emitters and guided modes is of great current interest for nonlinear quantum optics as well as efficient and scalable quantum information processing. In this work, we extend these activities to the coupling of organic dye molecules to a highly confined mode of a nanofiber, allowing mirrorless and low-threshold laser action in an effective mode volume of less than 100 femtoliters. We model this laser system based on semi-classical rate equations and present an analytic compact form of the laser output intensity. Despite the lack of a cavity structure, we achieve a coupling efficiency of the spontaneous emission to the waveguide mode of 0.07(0.01), in agreement with our calculations. In a further experiment, we also demonstrate the use of a plasmonic nanoparticle as a dispersive output coupler. Our laser architecture is promising for a number of applications in optofluidics and provides a fundamental model system for studying nonresonant feedback stimulated emission

    Partial cloaking of a gold particle by a single molecule

    No full text
    Extinction of light by material particles stems from losses incurred by absorption or scattering. The extinction cross section is usually treated as an additive quantity, leading to the exponential laws that govern the macroscopic attenuation of light. In this work, we demonstrate that the extinction cross section of a large gold nanoparticle can be substantially reduced, i.e., the particle becomes more transparent, if a single molecule is placed in its near field. This partial cloaking eect results from a coherent plasmonic interaction between the molecule and the nanoparticle, whereby each of them acts as a nano-antenna to modify the radiative properties of the other

    Literaturverzeichnis

    No full text

    Nanoscale nonlinear plasmonics in photonic waveguides and circuits

    No full text
    corecore