19,149 research outputs found
Strangeness Saturation: Dependence on System-Size, Centrality and Energy
The dependence of the strangeness saturation factor on the system size,
centrality and energy is studied in relativistic heavy-ion collisions.Comment: contribution for Proc. 19th Winter Workshop on Nuclear Dynamics,
Breckenridge, February 8-15, 200
Photonic measurements of the longitudinal expansion dynamics in Heavy-Ion collisions
Due to the smallness of the electromagnetic coupling, photons escape from the
hot and dense matter created in an heavy-ion collision at all times, in
contrast to hadrons which are predominantly emitted in the final freeze-out
phase of the evolving system. Thus, the thermal photon yield carries an imprint
from the early evolution. We suggest how this fact can be used to gain
information about where between the two limiting cases of Bjorken
(boost-invariant expansion) and Landau (complete initial stopping and
re-expansion) hydrodynamics the actual evolution can be found. We argue that
both the rapidity dependence of the photon yield and photonic HBT radii are
capable of answering this question.Comment: 10 pages, 3 figure
Measurement of macroscopic plasma parameters with a radio experiment: Interpretation of the quasi-thermal noise spectrum observed in the solar wind
The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P
A high yield neutron target
Target, in cylinder form, rotates rapidly in front of beam. Titanium tritide film is much thicker than range of accelerated deutron. Sputtering electrode permits full use of thick film. Stream of high-velocity coolant provides efficient transfer of heat from target
Phase Space Tomography of Classical and Nonclassical Vibrational States of Atoms in an Optical Lattice
Atoms trapped in optical lattice have long been a system of interest in the
AMO community, and in recent years much study has been devoted to both short-
and long-range coherence in this system, as well as to its possible
applications to quantum information processing. Here we demonstrate for the
first time complete determination of the quantum phase space distributions for
an ensemble of atoms in such a lattice, including a negative Wigner
function for atoms in an inverted state.Comment: Submitted to Journal of Optics B: Quantum and Semiclassical Optics.
Special issue in connection with the 9th International Conference on Squeezed
States and Uncertainty Relations, to be held in Besancon, France, on 2-6 May
200
Flow induced ultrasound scattering: experimental studies
Sound scattering by a finite width beam on a single rigid body rotation
vortex flow is detected by a linear array of transducers (both smaller than a
flow cell), and analyzed using a revised scattering theory. Both the phase and
amplitude of the scattered signal are obtained on 64 elements of the detector
array and used for the analysis of velocity and vorticity fields. Due to
averaging on many pulses the signal-to-noise ratio of the phases difference in
the scattered sound signal can be amplified drastically, and the resolution of
the method in the detection of circulation, vortex radius, vorticity, and
vortex location becomes comparable with that obtained earlier by time-reversal
mirror (TRM) method (P. Roux, J. de Rosny, M. Tanter, and M. Fink, {\sl Phys.
Rev. Lett.} {\bf 79}, 3170 (1997)). The revised scattering theory includes two
crucial steps, which allow overcoming limitations of the existing theories.
First, the Huygens construction of a far field scattering signal is carried out
from a signal obtained at any intermediate plane. Second, a beam function that
describes a finite width beam is introduced, which allows using a theory
developed for an infinite width beam for the relation between a scattering
amplitude and the vorticity structure function. Structure functions of the
velocity and vorticity fields deduced from the sound scattering signal are
compared with those obtained from simultaneous particle image velocimetry (PIV)
measurements. Good quantitative agreement is found.Comment: 14 pages, 23 figures. accepted for publication in Phys. Fluids(June
issue
- …