17 research outputs found

    High strength modified nanofibrillated cellulose-polyvinyl alcohol films

    No full text
    In this study surface-modified nanofibrillated cellulose (NFC) was used at low levels (0.5 to1.5 wt%) as a reinforcement in a polyvinyl alcohol (PVA) matrix. The modified-NFC-PVA composite films prepared using the solution casting technique showed improved mechanical performance. Birch pulp cellulose was initially modified by allylation using a solvent-free, dry modification method followed by subsequent epoxidation of the allyl groups and finally grinding the pulp to yield epoxy-NFC. In order to obtain optimal mechanical performance, epoxy-NFC with different degrees of substitution was evaluated in the reinforcement of PVA. The addition of 1 wt% epoxy- NFC (degree of substitution, DS 0.07) enhanced the modulus, strength, and strain of pure PVA film by 307, 139 and 23 %, respectively, thus producing the best performing film. The results demonstrate the favourable effect of chemically functionalized NFC on the mechanical properties of polyvinyl alcohol compared to unmodified NFC as reinforcement. In order to improve industrial and economic feasibility, the manufacture of the composite was also done in situ by grinding cellulose directly in PVA to produce the new biocomposite in a one-step process

    Combining Modeling and Measurements To Predict Crystal Morphology in Material Extrusion

    No full text
    Semicrystalline polymer melts are commonly used in material extrusion (MatEx) for 3D printing. Although flows have a profound effect on polymer crystallization, the relationship between typical MatEx deformation rates and printed-part crystal morphology is yet to be understood. Here, MatEx is used to print a wall of polylactic acid filaments. The linear rheology and quiescent crystallization kinetics are characterized, infrared imaging is used to measure temperature variations during the MatEx process, and optical microscopy is employed to determine the resulting crystal morphology before and after a postprinting thermal annealing process. Our flow-enhanced crystallization model demonstrates that MatEx-induced polymer stretch leads to a higher nucleation density and greater space filling in the weld regions between deposited filaments. Consequently, after annealing, the weld regions feature smaller spherulites than the filament center, as shown by optical microscopy. Finally, flow-induced crystallization is proposed as a method to improve weld toughness
    corecore