17 research outputs found

    Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) refers to a broad spectrum of neurodevelopmental disorders characterized by three central behavioral symptoms: impaired social interaction, impaired social communication, and restricted and repetitive behaviors. However, the symptoms are heterogeneous among patients and a number of ASD mouse models have been generated containing mutations that mimic the mutations found in human patients with ASD. Each mouse model was found to display a unique set of repetitive behaviors. In this review, we summarize the repetitive behaviors of the ASD mouse models and variations found in their neural mechanisms including molecular and electrophysiological features. We also propose potential neuronal mechanisms underlying these repetitive behaviors, focusing on the role of the cortico-basal ganglia-thalamic circuits and brain regions associated with both social and repetitive behaviors. Further understanding of molecular and circuitry mechanisms of the repetitive behaviors associated with ASD is necessary to aid the development of effective treatments for these disorders

    Characterization of the Engrailed mutant mice as experimental models for Parkinson's disease

    No full text
    Engrailed genes are homeodomain-containing transcription factors necessary for the development and maintenance of mesencephalic dopaminergic neurons. Deletion in the Engrailed genes has been shown to affect the survival of mesencephalic dopaminergic neurons both during development and in the adult. Here we describe for the first time a significant reduction in striatal dopamine levels in En1+/-;En2+/- mice compared with their En2+/- littermates, accompanied by a modest reduction in the number of nigral DA neurons. Our results strengthen previous evidence indicating Engrailed genes as survival factors for mature dopaminergic neurons. Furthermore, our data suggest a role for these transcription factors in the maintenance of synaptic dopaminergic neurotransmission in adult neuron

    CYP 2E1 mutant mice are resistant to DDC-induced enhancement of MPTP toxicity

    No full text
    In order to reach a deeper insight into the mechanism of diethyldithiocarbamate (DDC)-induced enhancement of MPTP toxicity in mice, we showed that CYP450 (2E1) inhibitors, such as diallyl sulfide (DAS) or phenylethylisothiocyanate (PIC), also potentiate the selective DA neuron degeneration in C57/bl mice. Furthermore we showed that CYP 2E1 is present in the brain and in the basal ganglia of mice (Vaglini et al., 2004). However, because DAS and PIC are not selective CYP 2E1 inhibitors and in order to provide direct evidence for CYP 2E1 involvement in the enhancement of MPTP toxicity, CYP 2E1 knockout mice (GONZ) and wild type animals (SVI) of the same genetic background were treated with MPTP or the combined DDC + MPTP treatment. In CYP 2E1 knockout mice, DDC pretreatment completely fails to enhance MPTP toxicity, although enhancement of MPTP toxicity was regularly present in the SVI control animals. The immunohistochemical study confirms our results and suggests that CYP 2E1 may have a detoxifying role

    Behavioral, Neurochemical, and Electrophysiological Changes in an Early Spontaneous Mouse Model of Nigrostriatal Degeneration

    No full text
    In idiopathic Parkinson's disease, clinical symptoms do not emerge until consistent neurodegeneration has occurred. The late appearance of symptoms implies the existence of a relatively long preclinical period during which several disease-induced neurochemical changes take place to mask the existence of the disease and delay its clinical manifestations. The aim of this study was to examine the neurochemical, neurophysiological, and behavioral changes induced by the loss of nigrostriatal innervation in the En1+/-;En2-/- mouse, in the 10 months following degeneration, compared to En2 null mutant mice. Behavioral analysis (Pole-test, Beam-walking test, and Inverted grid test) and field potential recordings in the striatum indicated that loss of ~70% of nigrostriatal neurons produced no significant functional effects until 8 months of age, when En1+/-;En2-/- animals started to show frank motor deficits and electrophysiological alterations in corticostriatal plasticity. Similarly, alterations in dopamine homeostasis, dopamine turnover, and dopamine innervation were observed in aged animals compared to young En1+/-;En2-/- mice. These data suggests that in En1+/-;En2-/- mice nigrostriatal degeneration in the substantia nigra is functionally compensated

    Behavioral, neurochemical, and electrophysiological changes in an early spontaneous mouse model of nigrostriatal degeneration

    No full text
    In idiopathic Parkinson's disease, clinical symptoms do not emerge until consistent neurodegeneration has occurred. The late appearance of symptoms implies the existence of a relatively long preclinical period during which several disease-induced neurochemical changes take place to mask the existence of the disease and delay its clinical manifestations. The aim of this study was to examine the neurochemical, neurophysiological, and behavioral changes induced by the loss of nigrostriatal innervation in the En1+/-;En2-/- mouse, in the 10 months following degeneration, compared to En2 null mutant mice. Behavioral analysis (Pole-test, Beam-walking test, and Inverted grid test) and field potential recordings in the striatum indicated that loss of ~70% of nigrostriatal neurons produced no significant functional effects until 8 months of age, when En1+/-;En2-/- animals started to show frank motor deficits and electrophysiological alterations in corticostriatal plasticity. Similarly, alterations in dopamine homeostasis, dopamine turnover, and dopamine innervation were observed in aged animals compared to young En1+/-;En2-/- mice. These data suggests that in En1+/-;En2-/- mice nigrostriatal degeneration in the substantia nigra is functionally compensated

    Increased susceptibility to kainic acid-induced seizures in Engrailed-2 knockout mice.

    No full text
    The En2 gene, coding for the homeobox-containing transcription factor Engrailed-2 (EN2), has been associated to autism spectrum disorder (ASD). Due to neuroanatomical and behavioral abnormalities, which partly resemble those observed in ASD patients, En2 knockout (En2(-/-)) mice have been proposed as a model for ASD. In the mouse embryo, En2 is involved in the specification of midbrain/hindbrain regions, being predominantly expressed in the developing cerebellum and ventral midbrain, and its expression is maintained in these structures until adulthood. Here we show that in the adult mouse brain, En2 mRNA is expressed also in the hippocampus and cerebral cortex. Hippocampal En2 mRNA content decreased after seizures induced by kainic acid (KA). This suggests that En2 might also influence the functioning of forebrain areas during adulthood and in response to seizures. Indeed, a reduced expression of parvalbumin and somatostatin was detected in the hippocampus of En2(-/-) mice as compared to wild-type (WT) mice, indicating an altered GABAergic innervation of limbic circuits in En2(-/-) mice. In keeping with these results, En2(-/-) mice displayed an increased susceptibility to KA-induced seizures. KA (20 mg/kg) determined more severe and prolonged generalized seizures in En2(-/-) mice, when compared to WT animals. Seizures were accompanied by a widespread c-fos and c-jun mRNA induction in the brain of En2(-/-) but not WT mice. Long-term histopathological changes (CA1 cell loss, upregulation of neuropeptide Y) also occurred in the hippocampus of KA-treated En2(-/-) but not WT mice. These findings suggest that En2(-/-) mice might be used as a novel tool to study the link between epilepsy and AS
    corecore