66 research outputs found

    A Single-Chain-Based Hexavalent CD27 Agonist Enhances T Cell Activation and Induces Anti-Tumor Immunity

    Get PDF
    Tumor necrosis factor receptor superfamily member 7 (TNFRSF7, CD27), expressed primarily by T cells, and its ligand CD27L (TNFSF7, CD70) provide co-stimulatory signals that boost T cell activation, differentiation, and survival. Agonistic stimulation of CD27 is therefore a promising therapeutic concept in immuno-oncology intended to boost and sustain T cell driven anti-tumor responses. Endogenous TNFSF/TNFRSF-based signal transmission is a structurally well-defined event that takes place during cell-to-cell-based contacts. It is well-established that the trimeric-trivalent TNFSF-receptor binding domain (TNFSF-RBD) exposed by the conducting cell and the resulting multi-trimer-based receptor clustering on the receiving cell are essential for agonistic signaling. Therefore, we have developed HERA-CD27L, a novel hexavalent TNF receptor agonist (HERA) targeting CD27 and mimicking the natural signaling concept. HERA-CD27L is composed of a trivalent but single-chain CD27L-receptor-binding-domain (scCD27L-RBD) fused to an IgG1 derived silenced Fc-domain serving as dimerization scaffold. The hexavalent agonist significantly boosted antigen-specific T cell responses while having no effect on non-specific T cells and was superior over stabilized recombinant trivalent CD27L. In addition, HERA-CD27L demonstrated potent single-agent anti-tumor efficacy in two different syngeneic tumor models, MC38-CEA and CT26wt. Furthermore, the combination of HERA-CD27L and an anti-PD-1 antibody showed additive anti-tumor effects highlighting the importance of both T cell activation and checkpoint inhibition in anti-tumor immunity. In this manuscript, we describe the development of HERA-CD27L, a true CD27 agonist with a clearly defined forward-signaling mechanism of action

    An evaluation of 9-1-1 calls to assess the effectiveness of dispatch-assisted cardiopulmonary resuscitation (CPR) instructions: design and methodology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac arrest is the leading cause of mortality in Canada, and the overall survival rate for out-of-hospital cardiac arrest rarely exceeds 5%. Bystander cardiopulmonary resuscitation (CPR) has been shown to increase survival for cardiac arrest victims. However, bystander CPR rates remain low in Canada, rarely exceeding 15%, despite various attempts to improve them. Dispatch-assisted CPR instructions have the potential to improve rates of bystander CPR and many Canadian urban communities now offer instructions to callers reporting a victim in cardiac arrest. Dispatch-assisted CPR instructions are recommended by the International Guidelines on Emergency Cardiovascular Care, but their ability to improve cardiac arrest survival remains unclear.</p> <p>Methods/Design</p> <p>The overall goal of this study is to better understand the factors leading to successful dispatch-assisted CPR instructions and to ultimately save the lives of more cardiac arrest patients. The study will utilize a before-after, prospective cohort design to specifically: 1) Determine the ability of 9-1-1 dispatchers to correctly diagnose cardiac arrest; 2) Quantify the frequency and impact of perceived agonal breathing on cardiac arrest diagnosis; 3) Measure the frequency with which dispatch-assisted CPR instructions can be successfully completed; and 4) Measure the impact of dispatch-assisted CPR instructions on bystander CPR and survival rates.</p> <p>The study will be conducted in 19 urban communities in Ontario, Canada. All 9-1-1 calls occurring in the study communities reporting out-of-hospital cardiac arrest in victims 16 years of age or older for which resuscitation was attempted will be eligible. Information will be obtained from 9-1-1 call recordings, paramedic patient care reports, base hospital records, fire medical records and hospital medical records. Victim, caller and system characteristics will be measured in the study communities before the introduction of dispatch-assisted CPR instructions (before group), during the introduction (run-in phase), and following the introduction (after group).</p> <p>Discussion</p> <p>The study will obtain information essential to the development of clinical trials that will test a variety of educational approaches and delivery methods for telephone cardiopulmonary resuscitation instructions. This will be the first study in the world to clearly quantify the impact of dispatch-assisted CPR instructions on survival to hospital discharge for out-of-hospital cardiac arrest victims.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00664443</p

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Appraisal of EMS during the 2006 FIFA World Cup: Allocation of treatment areas

    No full text

    Training Program of the Rescue Services — Forefront of Disaster Aid

    No full text

    Prophylaxe und Infektionsrisiko der Reanimation

    No full text

    Pandemie COVID-19 – verpasste Chancen?

    No full text

    COVID-19-Leitlinien des ERC zur Reanimation

    No full text
    • …
    corecore