556 research outputs found

    TNF-related apoptosis-inducing ligand (TRAIL): a potential candidate for combined treatment of hematological malignancies.

    Get PDF

    Potential Prognostic Significance of Decreased Serum Levels of TRAIL after Acute Myocardial Infarction

    Get PDF
    BACKGROUND: Since soluble TRAIL exhibits anti-inflammatory and anti-atherosclerotic activities both in vitro and in animal models, this study was designed to assess the relationship between the serum levels of TRAIL and clinical outcomes in patients with acute myocardial infarction (AMI). METHODOLOGY/PRINCIPAL FINDINGS: Levels of TRAIL were measured by ELISA in serial serum samples obtained from 60 patients admitted for AMI, both during hospitalization and in a follow-up of 12 months, as well as in 60 healthy control subjects. Serum levels of TRAIL were significantly decreased in patients with AMI at baseline (within 24 hours from admission), compared with healthy controls, and showed a significant inverse correlation with a series of negative prognostic markers, such as CK, CK-MB and BNP. TRAIL serum levels progressively increased at discharge, but normalized only at 6-12 months after AMI. Of note, low TRAIL levels at the patient discharge were associated with increased incidence of cardiac death and heart failure in the 12-month follow-up, even after adjustment for demographic and clinical risk parameters (hazard ratio [HR] of 0.93 [95% CI, 0.89 to 0.97]; p = 0.001). CONCLUSIONS/SIGNIFICANCE: Although the number of patients studied was limited, our findings indicate for the first time that circulating TRAIL might represent an important predictor of cardiovascular events, independent of conventional risk markers

    COVID-19 and individual genetic susceptibility/receptivity: Role of ACE1/ACE2 genes, immunity, inflammation and coagulation. might the double x-chromosome in females be protective against SARS-COV-2 compared to the single x-chromosome in males?

    Get PDF
    In December 2019, a novel severe acute respiratory syndrome (SARS) from a new coronavirus (SARS-CoV-2) was recognized in the city of Wuhan, China. Rapidly, it became an epidemic in China and has now spread throughout the world reaching pandemic proportions. High mortality rates characterize SARS-CoV-2 disease (COVID-19), which mainly affects the elderly, causing unrestrained cytokines-storm and subsequent pulmonary shutdown, also suspected micro thromboembolism events. At the present time, no specific and dedicated treatments, nor approved vaccines, are available, though very promising data come from the use of anti-inflammatory, anti-malaria, and anti-coagulant drugs. In addition, it seems that males are more susceptible to SARS-CoV-2 than females, with males 65% more likely to die from the infection than females. Data from the World Health Organization (WHO) and Chinese scientists show that of all cases about 1.7% of women who contract the virus will die compared with 2.8% of men, and data from Hong Kong hospitals state that 32% of male and 15% of female COVID-19 patients required intensive care or died. On the other hand, the long-term fallout of coronavirus may be worse for women than for men due to social and psychosocial reasons. Regardless of sex-or gender-biased data obtained from WHO and those gathered from sometimes controversial scientific journals, some central points should be considered. Firstly, SARS-CoV-2 has a strong interaction with the human ACE2 receptor, which plays an essential role in cell entry together with transmembrane serine protease 2 (TMPRSS2); it is interesting to note that the ACE2 gene lays on the X-chromosome, thus allowing females to be potentially heterozygous and differently assorted compared to men who are definitely hemizygous. Secondly, the higher ACE2 expression rate in females, though controversial, might ascribe them the worst prognosis, in contrast with worldwide epidemiological data. Finally, several genes involved in inflammation are located on the X-chromosome, which also contains high number of immune-related genes responsible for innate and adaptive immune responses to infection. Other genes, out from the RAS-pathway, might directly or indirectly impact on the ACE1/ACE2 balance by influencing its main actors (e.g., ABO locus, SRY, SOX3, ADAM17). Unexpectedly, the higher levels of ACE2 or ACE1/ACE2 rebalancing might improve the outcome of COVID-19 in both sexes by reducing inflammation, thrombosis, and death. Moreover, X-heterozygous females might also activate a mosaic advantage and show more pronounced sex-related differences resulting in a sex dimorphism, further favoring them in counteracting the progression of the SARS-CoV-2 infection

    Circulating TRAIL Shows a Significant Post-Partum Decline Associated to Stressful Conditions

    Get PDF
    Background: Since circulating levels of TNF-related apoptosis inducing ligand (TRAIL) may be important in the physiopathology of pregnancy, we tested the hypothesis that TRAIL levels change at delivery in response to stressful conditions. Methods/Principal Findings: We conducted a longitudinal study in a cohort of 73 women examined at week 12, week 16, delivery and in the corresponding cord blood (CB). Serum TRAIL was assessed in relationship with maternal characteristics and to biochemical parameters. TRAIL did not vary between 12 (67.6627.6 pg/ml, means6SD) and 16 (64.0616.2 pg/ml) weeks ’ gestation, while displaying a significant decline after partum (49.3626.4 pg/ml). Using a cut-off decline.20 pg/ml between week 12 and delivery, the subset of women with the higher decline of circulating TRAIL (41.7%) showed the following characteristics: i) nullipara, ii) higher age, iii) operational vaginal delivery or urgent CS, iv) did not receive analgesia during labor, v) induced labor. CB TRAIL was significantly higher (131.6652 pg/ml) with respect to the corresponding maternal TRAIL, and the variables significantly associated with the first quartile of CB TRAIL (,90 pg/ml) were higher prepregnancy BMI, induction of labor and fetal distress. With respect to the biochemical parameters, maternal TRAIL at delivery showed an inverse correlation with C-reactive protein (CRP), total cortisol, glycemia and insulin at bivariate analysis, but only with CRP at multivariate analysis

    TRAIL treatment prevents renal morphological changes and TGF-\u3b2-induced mesenchymal transition associated with diabetic nephropathy

    Get PDF
    BACKGROUND: TNF-related apoptosis-inducing ligand (TRAIL) has attracted attention not only as an anti-cancer agent, but also as a potential treatment for diabetes. Animal studies have shown that TRAIL delivery ameliorated glucose control in type 1 and type 2 diabetes. It is currently unknown whether TRAIL positive effects are maintained in more severe forms of type 2 diabetes, and whether they include renoprotection. Our study aimed at evaluating TRAIL effects in a severe form of type 2 diabetes with nephropathy. MATERIALS AND METHODS: A total of 20 db/db mice were treated with saline or TRAIL twice per week for 12 weeks. In parallel, renal tubular epithelial cells were cultured with TGF-\u3b21 in the presence and absence of TRAIL, with and without silencing TRAIL-specific receptor (DR5) and leptin receptor. RESULTS: TRAIL did not improve glucose control, but it significantly reduced circulating interleukin (IL)-6 and resistin. In the kidney, TRAIL treatment significantly ameliorated glomerular and tubular morphology with an improvement in kidney function, but no effect on proteinuria. Our in vitro studies on TGF-\u3b21-treated cells, showed that by binding to DR5, TRAIL rescued normal tubular cell morphology, increasing E-cadherin and reducing \u3b1-smooth muscle actin (SMA) expression, with no effects on cell viability. Interestingly, both in vivo and in vitro, TRAIL reduced the accumulation of the autophagy substrate p62. CONCLUSIONS: Our data confirm TRAIL protective effects against organ damage and shed light on to promising anti-fibrotic actions, which are independent of glucose control. TRAIL anti-fibrotic actions might be due to the rescue of autophagy in diabetes

    Treatment With Recombinant Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Alleviates the Severity of Streptozotocin-Induced Diabetes

    Get PDF
    OBJECTIVE: To evaluate the potential therapeutic effect of recombinant human tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) treatment in a model of type 1 diabetes. RESEARCH DESIGN AND METHODS: Recombinant TRAIL was added in vitro to primary human and mouse peripheral blood mononuclear cells (PBMCs) and isolated human islets to evaluate the expression of the immunoregulatory gene SOCS1. Diabetes was induced by five consecutive daily injections of low-concentration (50 mg/kg) streptozotocin (STZ) in C57 black mice (n = 24). A group of these mice (n = 12) was co-injected with recombinant TRAIL (20 microg/day) for 5 days, and the diabetic status (glycemia and body weight) was followed over time. After 6 weeks, circulating levels of insulin, TNF-alpha, and osteoprotegerin (OPG) were measured, and animals were killed to perform the histological analysis of the pancreas. RESULTS: The in vitro exposure of both PBMCs and human islets to recombinant TRAIL significantly upregulated the expression of SOCS1. With respect to STZ-treated animals, mice co-injected with STZ+TRAIL were characterized by 1) lower levels of hyperglycemia, 2) higher levels of body weight and insulinemia, 3) a partial preservation of pancreatic islets with normal morphology, and 4) a lower expression of both systemic (TNF-alpha and OPG) and pancreatic (vascular cell adhesion molecule [VCAM]-1) inflammatory markers. CONCLUSIONS: Overall, these data demonstrate that the administration of recombinant TRAIL ameliorates the severity of STZ-induced type 1 diabetes, and this effect was accompanied by the upregulation of SOCS1 expressio

    TNFSF10 (tumor necrosis factor (ligand) superfamily, member 10)

    Get PDF
    Review on TNFSF10 (tumor necrosis factor (ligand) superfamily, member 10), with data on DNA, on the protein encoded, and where the gene is implicated

    Human Bone Marrow Mesenchymal Stem Cells Display Anti-Cancer Activity in SCID Mice Bearing Disseminated Non-Hodgkin's Lymphoma Xenografts

    Get PDF
    Abstract BACKGROUND: Although multimodality treatment can induce high rate of remission in many subtypes of non-Hodgkin's lymphoma (NHL), significant proportions of patients relapse with incurable disease. The effect of human bone marrow (BM) mesenchymal stem cells (MSC) on tumor cell growth is controversial, and no specific information is available on the effect of BM-MSC on NHL. METHODOLOGY/PRINCIPAL FINDINGS: The effect of BM-MSC was analyzed in two in vivo models of disseminated non-Hodgkin's lymphomas with an indolent (EBV(-) Burkitt-type BJAB, median survival = 46 days) and an aggressive (EBV(+) B lymphoblastoid SKW6.4, median survival = 27 days) behavior in nude-SCID mice. Intra-peritoneal (i.p.) injection of MSC (4 days after i.p. injection of lymphoma cells) significantly increased the overall survival at an optimal MSC:lymphoma ratio of 1:10 in both xenograft models (BJAB+MSC, median survival = 58.5 days; SKW6.4+MSC, median survival = 40 days). Upon MSC injection, i.p. tumor masses developed more slowly and, at the histopathological observation, exhibited a massive stromal infiltration coupled to extensive intra-tumor necrosis. In in vitro experiments, we found that: i) MSC/lymphoma co-cultures modestly affected lymphoma cell survival and were characterized by increased release of pro-angiogenic cytokines with respect to the MSC, or lymphoma, cultures; ii) MSC induce the migration of endothelial cells in transwell assays, but promoted endothelial cell apoptosis in direct MSC/endothelial cell co-cultures. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that BM-MSC exhibit anti-lymphoma activity in two distinct xenograft SCID mouse models of disseminated NHL

    The soluble terminal complement complex (SC5b-9) up-regulates osteoprotegerin expression and release by endothelial cells: Implications in rheumatoid arthritis

    Get PDF
    Objective. Complement activation products contribute to a large number of inflammatory diseases, including RA. We have investigated whether osteoprotegerin (OPG) may concur with the soluble terminal complement complex (SC5b-9) to the inflammatory cascade characterizing RA. Methods. Levels of SC5b-9 and OPG in the plasma and SF of patients with active RA were determined by ELISA. The presence of SC5b-9 and OPG in RA synovial lesions was analysed by immunohistochemistry. Cultured endothelial cells were used for in vitro leucocyte/endothelial cell adhesion assays. In addition, endothelial cells were exposed to SC5b-9 in order to evaluate the effects on the production of OPG protein, as well as the activation of the OPG promoter. Results. Patients affected by active RA are characterized by elevated levels of both SC5b-9 and OPG in plasma and/or SF. Of note, we have observed a co-localization of SC5b-9 and OPG in endothelial cells of post-capillary venules of RA synovial lesions. Data on endothelial cell cultures showed that exposure to SC5b-9 induced the up-regulation of OPG expression/release, stimulating the transcriptional activity of the OPG promoter, and synergized with TNF-α in up-regulating OPG production. Conclusions. Our findings demonstrate that SC5b-9 induces OPG production by endothelial cells and we propose that the SC5b-9-mediated up-regulation of OPG may be an important mechanism whereby complement contributes in promoting and/or enhancing the inflammation in RA. © The Author 2009. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved
    corecore