16 research outputs found

    Synthesis of trace element bearing single crystals of Chlor-Apatite (Ca5(PO4)3Cl) using the flux growth method

    Full text link
    We present a new strategy on how to synthesize trace-element bearing (REE, Sr) chlorapatites Ca5(PO4)3Cl using the flux growth method. Synthetic apatites were up to several mm long, light blue in colour. The apatites were characterized using XRD, electron microprobe and laser ablation ICP-MS (LA-ICPMS) techniques and contained several hundred μg/g La, Ce, Pr, Sm, Gd and Lu and about 1700 μg/g Sr. The analyses indicate that apatites were homogenous (within the uncertainties) for major and trace elements

    Pressure-temperature evolution of primordial solar system solids during impact-induced compaction

    Get PDF
    Prior to becoming chondritic meteorites, primordial solids were a poorly consolidated mix of mm-scale igneous inclusions (chondrules) and high-porosity sub-μm dust (matrix). We used high-resolution numerical simulations to track the effect of impact-induced compaction on these materials. Here we show that impact velocities as low as 1.5 km s−1 were capable of heating the matrix to >1,000 K, with pressure–temperature varying by >10 GPa and >1,000 K over ~100 μm. Chondrules were unaffected, acting as heat-sinks: matrix temperature excursions were brief. As impact-induced compaction was a primary and ubiquitous process, our new understanding of its effects requires that key aspects of the chondrite record be re-evaluated: palaeomagnetism, petrography and variability in shock level across meteorite groups. Our data suggest a lithification mechanism for meteorites, and provide a ‘speed limit’ constraint on major compressive impacts that is inconsistent with recent models of solar system orbital architecture that require an early, rapid phase of main-belt collisional evolution

    Experimentelle Untersuchungen zur Stabilitaet, Kristallchemie und Kristallphysik von CuS_2-FeS_2-Mischkristallen

    No full text
    SIGLEAvailable from TIB Hannover: DW 5920 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Commentary on Constraints on the Equations of State of stiff anisotropic minerals: Rutile, and the implications for rutile elastic barometry [Miner. Mag. 83 (2019) pp. 339-347]

    No full text
    The conclusion of Zaffiro et al. (2019; Constraints on the Equations of State of stiff anisotropic minerals: rutile, and the implications for rutile elastic barometry. Mineralogical Magazine, 83, 339-347) that the Mie-Grüneisen-Debye (MGD) Equation of State (EoS) cannot fit the available data for rutile is shown to be incorrect, even though rutile exhibits significant anisotropic thermal pressure which invalidates the quasi-harmonic approximation used as the basis for the MGD EoS. The refined parameters for the MGD EoS of rutile are: KTR0= 205.05(25) GPa, = 7.2(5), θD = 399(20) K, γ0= 1.40(2) and q = 1.5(7). This EoS predicts volumes, bulk moduli and volume thermal expansion coefficients for rutile at metamorphic conditions that are statistically indistinguishable from those predicted by the 'isothermal' type of EoS reported previously

    An experimental study of the replacement of leucite by analcime

    No full text
    Leucite and analcime have open framework aluminosilicate structures, where ion exchange by cation substitution has been previously used to explain the replacement of one phase by another. Using O-18-enriched NaCl solutions in hydrothermal reactions and run-product analyses using scanning electron microscopy, infrared and Raman spectroscopy, and time-of-flight secondary ion mass spectrometry, we show that the replacement of leucite by analcime is not a solid-state reaction involving cation exchange by volume diffusion. Textural features such as nano-pores and clusters, as well as the detection of high amounts of O-18 in the framework of analcime, suggest that the reaction proceeds by dissolution of leucite and reprecipitation of analcime, where structural O atoms of the leucite framework are exchanged and a new analcime structure forms at a moving interface through the leucite parent crystal. The characteristic high porosity (on a nano-scale) in the analcime product phase results from some of the parent phase being lost to the solution to give a volume deficit reaction. However, external dimensions are maintained during the process to result in the pseudomorphic replacement of an open framework aluminosilicate structure by a coupled dissolution-reprecipitation mechanism
    corecore