136 research outputs found

    P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance

    Full text link
    Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT:PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications

    Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells

    No full text
    We investigate thin poly(3-hexylthiophene-2,5-diyl)/[6,6]-phenyI C-61 butyric acid methyl ester (P3HT/PCBM) films, which are widely used as active layers in plastic solar cells. Their structural properties are studied by grazing-incidence X-ray diffraction (XRD). The size and the orientation of crystalline]P3HT nanodomains within the films are determined. PCBM crystallites are not detected in thin films by XRD. Upon annealing, the P3HT crystallinity increases, leading to an increase in the optical absorption and spectral photocurrent in the low-photon-energy region. As a consequence, the efficiency of P3HT/PCBM solar cells is significantly increased. A direct relation between efficiency and P3HT crystallinity is demonstrated

    Crystalline-crystalline block copolymers of regioregular poly(3-hexylthiophene) and polyethylene by ring-opening metathesis polymerization

    No full text
    Block copolymers of regioregular poly(3-hexylthiophene) (P3HT) and polyethylene (PE) were synthesized through the chain transfer of olefin-terminated P3HT in the presence of cyclooctene via ring-opening metathesis polymerization (ROMP). Subsequent hydrogenation of the poly(cyclooctene) block yielded high molecular weight, crystalline-crystalline P3HT-PE block copolymers, which are thermally stable and resistant to solvents under ambient conditions. These copolymers were characterized by 1H NMR, DSC, and WAXS and represent the first materials of a class of crystalline-crystalline semiconducting-insulating block copolymers
    • …
    corecore