38 research outputs found

    Quantitative analysis by renormalized entropy of invasive electroencephalograph recordings in focal epilepsy

    Get PDF
    Invasive electroencephalograph (EEG) recordings of ten patients suffering from focal epilepsy were analyzed using the method of renormalized entropy. Introduced as a complexity measure for the different regimes of a dynamical system, the feature was tested here for its spatio-temporal behavior in epileptic seizures. In all patients a decrease of renormalized entropy within the ictal phase of seizure was found. Furthermore, the strength of this decrease is monotonically related to the distance of the recording location to the focus. The results suggest that the method of renormalized entropy is a useful procedure for clinical applications like seizure detection and localization of epileptic foci.Comment: 10 pages, 5 figure

    Generalized recurrence plot analysis for spatial data

    No full text
    Recurrence plot based methods are highly efficient and widely accepted tools for the investigation of time series or one-dimensional data. We present an extension of the recurrence plots and their quantifications in order to study recurrent structures in higher-dimensional spatial data. The capability of this extension is illustrated on prototypical 2D models. Next, the tested and proved approach is applied to assess the bone structure from CT images of human proximal tibia. We find that the spatial structures in trabecular bone become more self-similar during the bone loss in osteoporosis

    Complexity measures and their applications

    No full text

    One Method for Restoring Inhomogeneous Attractors

    No full text
    corecore