50 research outputs found
Clar's Theory, STM Images, and Geometry of Graphene Nanoribbons
We show that Clar's theory of the aromatic sextet is a simple and powerful
tool to predict the stability, the \pi-electron distribution, the geometry, the
electronic/magnetic structure of graphene nanoribbons with different hydrogen
edge terminations. We use density functional theory to obtain the equilibrium
atomic positions, simulated scanning tunneling microscopy (STM) images, edge
energies, band gaps, and edge-induced strains of graphene ribbons that we
analyze in terms of Clar formulas. Based on their Clar representation, we
propose a classification scheme for graphene ribbons that groups configurations
with similar bond length alternations, STM patterns, and Raman spectra. Our
simulations show how STM images and Raman spectra can be used to identify the
type of edge termination