1,773 research outputs found

    Enhanced thermoelectric figure of merit in vertical graphene junctions

    Full text link
    In this work, we investigate thermoelectric properties of junctions consisting of two partially overlapped graphene sheets coupled to each other in the cross-plane direction. It is shown that because of the weak van-der Waals interactions between graphene layers, the phonon conductance in these junctions is strongly reduced, compared to that of single graphene layer structures, while their electrical performance is weakly affected. By exploiting this effect, we demonstrate that the thermoelectric figure of merit can reach values higher than 1 at room temperature in junctions made of gapped graphene materials, for instance, graphene nanoribbons and graphene nanomeshes. The dependence of thermoelectric properties on the junction length is also discussed. This theoretical study hence suggests an efficient way to enhance thermoelectric efficiency of graphene devices.Comment: 6 pages, 4 figures, submitte

    Amorphous ferromagnetism and re-entrant magnetic glassiness in Sm2_{2}Mo2_{2}O7_{7}: new insights into the electronic phase diagram of pyrochlore molybdates

    Full text link
    We discuss the magnetic properties of a Sm2_{2}Mo2_{2}O7_{7} single crystal as investigated by means of different experimental techniques. In the literature, a conventional itinerant ferromagnetic state is reported for the Mo4+^{4+} sublattice below ∼78\sim 78 K. However, our results of dc magnetometry, muon spin spectroscopy (μ+\mu^{+}SR) and high-harmonics magnetic ac susceptibility unambiguously evidence highly disordered conditions in this phase, in spite of the crystalline and chemical order. This disordered magnetic state shares several common features with amorphous ferromagnetic alloys. This scenario for Sm2_{2}Mo2_{2}O7_{7} is supported by the anomalously high values of the critical exponents, as mainly deduced by a scaling analysis of our dc magnetization data and confirmed by the other techniques. Moreover, μ+\mu^{+}SR detects a significant static magnetic disorder at the microscopic scale. At the same time, the critical divergence of the third-harmonic component of the ac magnetic susceptibility around ∼78\sim 78 K leads to additional evidence towards the glassy nature of this magnetic phase. Finally, the longitudinal relaxation of μ+\mu^{+} spin polarization (also supported by results of ac susceptibility) evidences re-entrant glassy features similar to amorphous ferromagnets.Comment: 15 pages, 13 figure

    Methane hydrate: shifting the coexistence temperature to higher temperatures with an external electric field

    Get PDF
    In the present work, we used molecular dynamic simulations of the equilibrium NPT ensemble to examine the effect of an external electric field on the three-phase coexistence temperature of methane gas, liquid water and methane hydrate. For these simulations, we used the TIP4P/Ice rigid water model and a single-site model for methane. The simulations were implemented at two pressures, 400 and 250bar, over temperatures ranging from 285 to 320K and from 280 to 315K, respectively. The application of an external electric field in the range of 0.1-0.9caused the effect of the thermal vibrations of the water molecules to become attenuated. This resulted in a shift of the three-phase coexistence temperature to higher temperatures. Electric fields below this range did not cause a difference in the coexistence temperature, and electric fields above this range enhanced the thermal effect. The shift had a magnitude of 22.5K on average.Peer ReviewedPostprint (author's final draft

    Ballistic heat transport of quantum spin excitations as seen in SrCuO2

    Full text link
    Fundamental conservation laws predict ballistic, i.e., dissipationless transport behaviour in one-dimensional quantum magnets. Experimental evidence, however, for such anomalous transport has been lacking ever since. Here we provide experimental evidence for ballistic heat transport in a S=1/2 Heisenberg chain. In particular, we investigate high purity samples of the chain cuprate SrCuO2 and observe a huge magnetic heat conductivity κmag\kappa_{mag}. An extremely large spinon mean free path of more than a micrometer demonstrates that κmag\kappa_{mag} is only limited by extrinsic scattering processes which is a clear signature of ballistic transport in the underlying spin model

    Study of phonon transport across several Si/Ge interfaces using full-band phonon Monte Carlo simulation

    Full text link
    A Full Band Monte Carlo simulator has been developed to consider phonon transmission across interfaces that are perpendicular to the heat flux. This solver of the Boltzmann transport equation which does not require any assumption on the shape the phonon distribution can naturally consider all phonon transport regimes from the diffusive to the fully ballistic regime. Hence, this simulator is used to study single and double Si/Ge heterostructures from the micrometer scale down to the nanometer scale i.e. in all phonon transport regime from ballistic to fully diffusive. A methodology to estimate the thermal conductivities and the thermal interfaces is presented

    The thermal conductivity of alternating spin chains

    Full text link
    We study a class of integrable alternating (S1,S2) quantum spin chains with critical ground state properties. Our main result is the description of the thermal Drude weight of the one-dimensional alternating spin chain as a function of temperature. We have identified the thermal current of the model with alternating spins as one of the conserved currents underlying the integrability. This allows for the derivation of a finite set of non-linear integral equations for the thermal conductivity. Numerical solutions to the integral equations are presented for specific cases of the spins S1 and S2. In the low-temperature limit a universal picture evolves where the thermal Drude weight is proportional to temperature T and central charge c.Comment: 15 pages, 1 figur

    H_c_3 for a thin-film superconductor with a ferromagnetic dot

    Full text link
    We investigate the effect of a ferromagnetic dot on a thin-film superconductor. We use a real-space method to solve the linearized Ginzburg-Landau equation in order to find the upper critical field, H_c_3. We show that H_c_3 is crucially dependent on dot composition and geometry, and may be significantly greater than H_c_2. H_c_3 is maximally enhanced when (1) the dot saturation magnetization is large, (2) the ratio of dot thickness to dot diameter is of order one, and (3) the dot thickness is large

    Preparation and optimization of a titanium-based feedstock for Fused Deposition Modeling

    Get PDF
    In this work the preparation and optimization of a titanium-based metal injection moulding (MIM) feedstock for Fused Deposition Modeling (FDM) is presented. The composition of the plastic binder system, consisting of a backbone polymer, a water-soluble polymer and a lubricant was optimized and MIM feedstocks with titanium contents ranging from 50 to 68 vol.% were prepared in a laboratory-scale internal mixer. During the feedstock preparation the torque of the mixing screws of the internal mixer was recorded, which allowed to determine an optimum Ti content of 59–61 vol.%. The morphology, thermal and rheological properties of the prepared MIM feedstocks were characterized using various techniques such as optical microscopy, SEM, FTIR, DSC, TGA, MFI and oscillatory rheometry. This study contributes to the emerging research on additive manufacturing of MIM feedstocks with the aim of producing pure titanium components with complicated shapes and high density from novel MIM feedstock as the starting material

    Mise en oeuvre d'un outil d'alerte et de cartographie temps réel des aléas naturels liés aux précipitations dans les régions montagneuses et méditerranéennes du Sud-Est de la France

    Get PDF
    International audienceDue to its mountainous topography and its Mediterranean climate, the Provence-Alpes-Côte d'Azur (PACA) region in Southeastern France is particularly prone to flash floods, debris flows and mass movements (landslides and rockfall). A mapping system for these rainfall induced hazards has been tested by local and regional authorities and Government agencies since 2011 as part of the RHYTMME project. This system allows, thank to radar rainfall estimation and rainfall-runoff modelling, the real-time warning and monitoring of flash floods wherever they may occur in the PACA territory. It is also intended to enable, during intense rainfall events, the localisation of the streams susceptible to generate debris flows and of the slopes the more likely to trigger landslides and/or rockfalls
    • …
    corecore