351 research outputs found

    Composition Dependence of Electrical Resistivity of Bismuth Antimonide Thin Films

    Get PDF

    Best Fit Method of Sample Selection in Data Hiding and Extraction

    Get PDF
    Today data security and its transmission over the wireless network need special attention. Intruder always has a watch on sensitive data transmitted over a wireless network. This work proposes an approach that minimizes the quantization error between the original and result carrier by selecting optimize samples during Data Hiding. Propose work find out best matching carrier components during the data hiding process. Results also imply that achieved results are far better than any other steganographic method

    Unraveling the cytotoxic potential of Temozolomide loaded into PLGA nanoparticles

    Get PDF
    BACKGROUND: Nanotechnology has received great attention since a decade for the treatment of different varieties of cancer. However, there is a limited data available on the cytotoxic potential of Temozolomide (TMZ) formulations. In the current research work, an attempt has been made to understand the anti-metastatic effect of the drug after loading into PLGA nanoparticles against C6 glioma cells. Nanoparticles were prepared using solvent diffusion method and were characterized for size and morphology. Diffusion of the drug from the nanoparticles was studied by dialysis method. The designed nanoparticles were also assessed for cellular uptake using confocal microscopy and flow cytometry. RESULTS: PLGA nanoparticles caused a sustained release of the drug and showed a higher cellular uptake. The drug formulations also affected the cellular proliferation and motility. CONCLUSION: PLGA coated nanoparticles prolong the activity of the loaded drug while retaining the anti-metastatic activity

    ASSESSMENT AND MONITORING OF AGRICULTURAL DROUGHTS IN MAHARASHTRA USING METEOROLOGICAL AND REMOTE SENSING BASED INDICES

    Get PDF
    Drought is a recurring climatic event characterized by slow onset, a gradual increase in its intensity, and persistence for a long period depending upon the availability of water. Droughts, broadly classified into meteorological, hydrological and agricultural drought, which are interconnected to each other. India, being an agriculture based economy depends primarily on agriculture production for its economic development and stability. The occurrence of agriculture drought affects the agricultural yield, which affects the regional economy to a larger extent. In present study, agricultural and meteorological drought in Maharashtra state was monitored using traditional as well as remote sensing methods. The meteorological drought assessment and characterization is done using two standard meteorological drought indices viz. standard precipitation index (SPI) and effective drought index (EDI). The severity and persistency of meteorological drought were studied using SPI for the period 1901 to 2015. However, accuracy of SPI in detection of sub-monthly drought is limited. Therefore, sub-monthly drought is effectively monitored using EDI. The monthly and sub-monthly drought mapped using SPI and EDI, respectively were then compared and assessed. It was concluded that EDI serves as a better indicator to monitor sub-monthly droughts. The agricultural drought monitoring was carried out using the remote sensing based indices such as vegetation condition index (VCI), temperature condition index (TCI), vegetation health index (VHI), shortwave angle slope index (SASI) and the index which maps the agricultural drought in a better way was identified. The area under drought as calculated by various agricultural drought indices compared with that of the EDI, it was found that the results of SASI matched with results of EDI. SASI denotes different values for the dry and wet soil and for the healthy and sparse vegetation. SASI monitors the agricultural drought better as compared to other indices used in this study

    TRAINING, EDUCATION, RESEARCH AND CAPACITY BUILDING NEEDS AND FUTURE REQUIREMENTS IN APPLICATIONS OF GEOSPATIAL TECHNOLOGY FOR WATER RESOURCES MANAGEMENT

    Get PDF
    In India, water resources are managed at different levels, i.e. at central level by Ministry of Water Resources, River Development & Ganga Rejuvenation, Central Water Commission and Central Ground Water Board, at states level by state water resources departments, and at local level by Municipal Corporation and Panchayati Raj Institutions (PRIs). As per India’s national water policy of year 2012 focuses on adaption to climate change, enhancement of water availability, water demand management by efficient water use practices, management of floods and droughts, water supply and sanitation, trans-boundary rivers, conservation of water bodies and infrastructure, and finally research and training needs for each theme. Geospatial technology has unique role in all aforementioned themes. Therefore, research and training in use of Geospatial Technology (GST) in water sector is needed for each theme at different levels of water administration and water utilisation. The current paper discusses the existing framework and content of capacity building in water sector and geospatial technology in use at various government organizations and institutes. The major gap areas and future capacity building requirements are also highlighted, along with duration and timelines of training/capacity building programs. The use of distance learning/educations tools, social media, and e-learning are also highlighted in promoting use of GST in water sector. The emerging technological trends such as, new remote sensing sensors for measuring water cycle components, ground sensors based field instruments, cloud based data integration and computational models, webGIS based water information portals and training needs of new technologies are also emphasised

    IMPORTANCE OF INCORPORATION OF GEOSPATIAL TECHNOLOGY APPLICATIONS IN WATER RESOURCES AT GRADUATE AND POST-GRADUATE COURSES OF CIVIL ENGINEERING

    Get PDF
    Water is a very crucial element to sustain life on earth. The availability of water varies both spatially and temporally. India being a water stress country, the per capita availability of water is reducing with time. It is predicted that by 2050 around 54% of the country will be water scarce. The changing climate along with the ever-increasing population is putting additional stress on water availability. The science of water, its availability and distribution on earth and its atmosphere, is generally regarded as hydrology. The important aspects of hydrology and hydraulic or more broadly water resources are taught as the subject or optional subjects the branch of Civil Engineering at almost all engineering institutes/colleges at the undergraduate level. It is also one of the specializations for post-graduate level studies. It is, by now, well proven that the geospatial technology play crucial role in water resources assessment, planning and management. However, the young minds (graduate and post-graduate students) are just being trained for typical hydrology using traditional means and approaches. The advancement and potential of geospatial technology has drawn the attention of academician, and it has been started as a subject mostly at the post-graduate courses. Recently, some of the institutions have started courses on geo-informatics at the graduate level. However, the hydrology and geospatial technology are generally taught as two separate subjects under different course at different levels mostly under the broad subject of Civil Engineering. The present paper emphasis on needs and ways of updating Civil Engineering course curriculum by focusing on incorporation of applications of geospatial technology in hydrology as regular subject

    Method for Label-Free Quantitative Proteomics for Sorghum bicolor L. Moench

    Get PDF
    Sorghum (Sorghum bicolor L. Moench) is a rapidly emerging high biomass feedstock for bioethanol and lignocellulosic biomass production. The robust varietal germplasm of sorghum and its completed genome sequence provide the necessary genetic and molecular tools to study and engineer the biotic/abiotic stress tolerance. Traditional proteomics approaches for outlining the sorghum proteome have many limitations like, demand for high protein amounts, reproducibility and identification of only few differential proteins. In this study, we report a gel-free, quantitative proteomic method for in-depth coverage of the sorghum proteome. This novel method combining phenol extraction and methanol chloroform precipitation gives high total protein yields for both mature sorghum root and leaf tissues. We demonstrate successful application of this method in comparing proteomes of contrasting cultivars of sorghum, at two different phenological stages. Protein identification and relative quantification analyses were performed by a label-free liquid chromatography tandem mass spectrometry (LC/MS-MS) analyses. Several unique proteins were identified respectively from sorghum tissues, specifically 271 from leaf and 774 from root tissues, with 193 proteins common in both tissues. Using gene ontology analysis, the differential proteins identified were finely corroborated with their leaf/root tissue specific functions. This method of protein extraction and analysis would contribute substantially to generate in-depth differential protein data in sorghum as well as related species. It would also increase the repertoire of methods uniquely suited for gel-free plant proteomics that are increasingly being developed for studying abiotic and biotic stress responses
    corecore